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Abstract

In this paper, some exact meromorphic solutions and generalized trigonometric solutions of the
space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation are established by
a new transformation and reliable methods. Moreover, some numerical solutions are obtained
by using the optimal decomposition method (ODM), and their accuracy is shown in tables
and images.
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1. Introduction

In 1972, Benjamin, Bona and Mahony constructed the long waves model in nonlinear dispersive system, that
is, the Benjamin-Bona-Mahony(BBM) equation [1]

Ug + Uy + Uy + Uggr = 0.

It was originally a nonlinear partial differential equation used to simulate small amplitude long waves in
hydrodynamics. For further study, the BBM equation is modified into the following form

2
Ut + Uy + AU UL + Ugzr = 0,

and it can not only describe the approximation of surface long waves in a nonlinear dispersive medium,
but also characterize the hydromagnetic waves in cold plasma, acoustic waves in anharmonic crystals and
acoustic-gravity waves in compressible fluids [1-3].

In the process of exploration, people find that many phenomena in nature can not be accurately described
by integer order equations, so fractional order differential equations have entered the public field of vision
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and gradually become a popular research topic. Naturally, the BBM equation is further rewritten into the
following mBBM equation [4]
0%u 0% , 0% 0%
O R P P

However, it is not easy to solve the fractional differential equations accurately, so solving and verifying the
accuracy of the solutions is a meaningful work. Therefore, the purpose of this paper is to find some analytical
and numerical solutions of mBBM equation, and verify that our solutions are reliable. Eq.(1) was studied by
some scholars in the past few years. They have adopted Exp-function method, extended (G’/G)-expansion
method, the first integral method and extended tanh method, and achieved lots of results [5-11].

The structure of this paper is as follows: in Section 2, Eq.(1) is transformed into an ordinary differential
equation(ODE) by using the definition and properties of truncated M-fractional derivative; in Section 3, the
meromorphic solutions of Eq.(1) are obtained by complex method; the generalized trigonometric solutions
of Eq.(1) are worked out by extended direct algebraic method in Section 4; in Section 5, ODM is used to
obtain approximate solutions, and some images and tables show us the accuracy of them; the summary of
our work is written in Section 6.

=0, ac(01). (1)

2. Simplification of mBBM equation

At the beginning, we will introduce the main tool used in simplification truncated M-fractional

derivative [12].

Definition 1. Let f : [0,00) = R. For a € (0,1), a truncated M -fractional derivative type of f of order a,
denoted by Z—]D)if, is
f(tiEg(et™™)) — f(t)

DY f(t) = lim - :

vVt >0, and ;Eg(-), 8 > 0 is a truncated Mittag-Leffler function of one parameter, defined as

i k
z
B = E - C.
(2 ﬁ(z) kZOF(Bk‘i‘].)’Ze
Theorem 1. Let 0 < a<1,8>0,a,b € R and f,g a-differentiable, at a point t > 0. Then:
(1) Z—D‘])‘V}'B(f og)(t) = f’(g(t))iDjafg(t), for [ differentiable at g(t).

(2) If f is differentiable, then ;D% f(t) = Ft(lﬁ__:l) dfd—(tt).

From what is known above, we construct a transformation

_ katT(B+1) | UeT(B+1)
n o o '

u(z,t) = W(z), 2

Then one can calculate

0%u o « A ]
o =i DS ule, t) = DY W z(2, )] = W/D52(x, t)
e th=e  dz(x,t) W tl=e Jat* 0B+ 1)
L(B+1) dt L(B+1) o
=W’

Similarly, 2% = kW, 25 — k3.

Ox ) Ox3a




So, Eq.(1) becomes to
k+DW' — koW*W' + W = 0.
(

Integrating the above formula to obtain
1
(k+0)W — gka?’ + KW +b=0. (2)

After that, we only need to find the solution W(z) of Eq.(2), then bring the transformation into it, and we’ll
get the solution W (X2 F{iﬁﬂ) + 4 F&ﬁ"’l)) = u(z,t) for Eq.(1).

3. Meromorphic solutions with complex method

Considering Eq.(2) in the complex plane [13-17], its solutions are included in class W (a meromorphic
function f belongs to the class W if f is a rational function of z, or a rational function of e¥*,v € C, or
an elliptic function). And it is found by calculation that the Eq.(2) satisfies the weak 2,1; condition. This
gives us a guide for assuming the form of the solutions [18,19].

Remark 1. The weakip,q; condition has the following definition.
Let p,q € N. Suppose that the meromorphic solution W (z) of Eq.(2) has at least one pole, we say that
Eq.(2) satisfies the weak jp,qs condition if substituting Laurent series

(oo}
W = Z cnzt g > 0,c_q #0
k=—q

-1
into Eq.(2) and then we can determine p distinct Laurent singular parts > cpz®.

k=—q
According to the definition in Remark 1 and the homogeneous balance method, we can get ¢ = 1,p =

2
2,0 1 =44/

3.1. Rational solutions

Suppose the form of rational solutions of Eq.(2) with z = 0 as the pole is

W(s) = 2+ £ 4o, 3)

Z—T

where 911, 021, 010 are all undetermined coefficients, and 7 is any complex number. Substitute Eq.(3) into
Eq.(2) and we get
6 .
AiZZ
—— =0 4
Z 3(z—71)3 7 (4)

where
Ao = 05,k — 6001 kP77,
Ay = 18091 K372 + 3@1()@%11{:7'311 - 3@%1/67'27) - 3911Q§1k720,

Ay = — 18091 k37 — 3001 k73 + 3@?092116731) — 9@10931k72v — 6010011021 k70 + SlekT’l} + Gngglszv
+ 30%1@21167"0 — 3om 173,



Az = — 3b73 + 6911k3 + 6921k3 — 3g10k73 + 3@11k72 + 9@21k72 + gi’okT?’v — 39%0g11k72v — 9gf0g21k721j
+ 3010011 kTv + 901003 kT + 12010011 021kTv — 0§, kv — 03, kv — 301103, kv — 307, 021kv
— 301007 + 301117% + 90172,
Ay =9b72 4 9010kT? — 6011 kT — 9001 kT — 39‘;’0167% + 6@11,9%0]{7"[} + 9921&0/{711 — 3@?191()/% - 3@%1910]67)
— 6011021 010kv + 9010l7* — 601117 — 9p21lT,
Az = = 9b7 — 9010k + 3011k + 3021k + 30TokTU — 3011050kv — 3p210T0kv — 9010lT + 3011l + 30211,
Ag = 3b+ 3010k — kolov + 3010l

Eq.(4) holds, which implies all A; = 0. By computing the system of equations we get g1 = + %, 011 =
2
:F(k/;g’i);;} , 010 = :F(k/igklz;—ab ==£2 (kjl) %7l = 6k37—72k7—2a and 021 = :I:\/ %7 011 = Oa 010 = 07 b= O7l = —k.
So all the rational solutions of Eq.(2) are
(k+1)72 6k2
o k+1
W) =5 Yoy Vv kDT o
Z—T—2p Z— 20 6k4v
and
+,/ 8k
Way(z) = - , 20 €C.
Z— 20

Naturally, the solutions to Eq.(1) are

(k+)72 [6k2
\% 6k4v :t v

ui(x,t) =F kzoT(A+1) | WeT(B+1) _ _ _ ke T(A+1) |, WoT(B+l) _
(k+1r
+ , R0 € (Ca
V6ktv
and
/ 6k2
t) = SV C
(1) = yoerin L wrem L 0 €C
6k2
The images of rational solution usg 1 (z,t) = kmar(ﬁﬂ)yfamﬁ“) are as follows.
o @ —Z0
10 A 10‘}\‘ 21[;}"
ot \ 0“1‘ alc
m“ -10¢
10 10 10 10 205
1.0 5 O,: 5 1.0 . 1.0
5 B, 0.
' 00 oe ,60 00 ’ 0.0 /djoh
. e 05~ 05 S S T
et s o
(a) a=0.2 (b) «=0.5 (¢) =08

Figure 1: up(x,t) with k =1,l = —-1,v =4, = 0.09, 29 = 0.



3.2. Simple periodic solutions
Let W(z) = R(n),n = €?*(7y is a constant), Eq.(2) turns to

1
(k+1)R— gkvRS +E32(R'* + Rn) +b=0. (5)
Its solutions with z = 0 as the pole are in the following form
c ¢
R(n) = nill +77i16+010’ (6)

where c11, ¢21,c10 are undetermined coefficients, and § = €7, ¢ is any complex number. Bring Eq.(6) into

Eq.(5) and we get the expression
6

2 3(n—13m—6)>3 0

=0

where

Ag =3b0° + 3¢100%k — 3¢110%k — 3c010%k — k3, 03v + 3,63 kv — 3cr0ct, 0% kv + 3¢ ge110% kv + 3¢3 o107 kv
4 3¢2,c010%kv — 6c19c110210%kv — 3c10ca, 6k + 3c11c3,0kv + oy kv + 3¢100°1 — 3¢116%1 — 3ca16°1,

A = —9b6% — 9062 — 37%¢118%k3 — 372010k — 9¢100%k + 6¢110°k — 9c100%k + 9¢116%k 4 9co1 62k + 6c21 0k
+ 363,03 kv + 3cr0c3, 0% kv — 6¢35c110%kv + 3¢306% kv — 3¢3, 0% kv + 9ci0¢3, 0% kv — 9c2ye110%kv
- 90%00216%11 - 30%10216%11 +12¢19¢11¢910%kv + 9610031(5]6’1] — 6011051(51{?’0 - 60%0621(5]61} — 60%1021(%11
+ 12¢19c116210kv — 302’114511 + 301oc§1kv — 3cllc§1kv —9¢100%1 + 6¢110%1 — 9¢10021 + 911621 4 9e91 621
+ 6¢2161,

Ay =908 + 27b6% + 966 — 37%¢116°k3 + 9921102k + 992010k — 372 co1k® + 9c100%k — 3¢116%k + 27¢106%k
— 18¢110%k — 9¢910%k + 9¢100k — 9¢110k — 18¢910k — 3ci’053kv + 365061153/€U — 96‘;’0(5216’0 — 9610631(52]6’[1
+ 18¢3gc110%kv + 9cigca10%kv — 6ergcricar62kv — 3¢50k + 3¢, 5kv — 9cioct kv — 9crocs, Skv
+ 30110315/{0 + 90?0011(5]61} + 180%0021(5]61} + 6c§1021(5kv — 24c¢q9c116210kV + 3c§1kv - 9010031/@@
+ 6c11¢2, kv + 3¢ gca1kv + 3¢2 ca1kv — 6ergcricarkv — 3eark + 9¢106°1 — 3¢116%1 4 27¢10621 — 18¢116%1
— 9¢218%1 + 9¢1061 — 9c1101 — 18¢2161 — 3eanl,

Ag = — 3b6% — 27b6% — 2766 — 3b 4+ 9721162k — 972110k — 992010k + 972 a1 k2 — 3¢100°k — 27¢100%k
+9¢116%k + 3c910%k — 27c100k + 18¢110k + 18¢a15k + ¢3563kv + 9¢3,6% kv — 9cigc116%kv — 3cigca10% kv
+ QC‘z’Oék‘v + 90106%1(5]61} + 3c10c§15kv - 180%0011(%11 - 186%0621(5]6’[} + 12¢19c11¢210kv + c?okv — c:flkv
— c%lkv + 3cloc?1kv + 9010631]611 — 3011031/{@ — 36%0611/67} — 90%0021]6'0 — 30?1621161) + 12¢19c11¢21 kv
— 3c10k + 3c11k + 9eark — 3¢106°1 — 27¢106%1 + 9e116%L + 3c216%1 — 27¢1061 + 18¢1161 + 18¢2161
— 3ciol + 3c11l 4 e,

Agq =9b6% + 27b6 + 9b — 972116k + 372210k + 377 c11k® — 972 o1 k® + 91007k + 27c106k — 9cr16k
— 6216k — 3¢ig0% kv — 9¢30kv 4+ 9c3c110kv + 6¢3yca1 0kv — 3¢5 kv — 3eioci kv — 3cioca kv
+ 6c2gc11kv + 9cigcarkv — 6ergciicarkv + 9ciok — 6¢11k — 9eark + 910621 + 27¢1060 — 9¢q101 — 69161
4+ 9¢19l — 6¢111 — 9coql,

As = —9b6 — 9b + 372011k:3 + 372 ¢ k® — 9c100k + 30:;’05100 + 3(:?0]{:11 — 3(:%0011100 — 30%0021kv —9¢i0k
4 3c11k + 3ca1k — 9¢100l — 9cqol + 3e11l + e,



Ag =3b— kC?O’U + 3c10k + 3cipl.

Calculate the equations of A; = 0 and get ¢11

=0

::l:\/\é/li’y 621:0,010::|: %k’y,l:w,b
V6ky(5—1) V6ky8(5—1) VBEky(S+1) 5 k342 (146(1049)) 2fk4u736(1+5)
and Cll—:l: o (o— 1)27 C =+ F—— \/W ’ 10—313\/2((5712,[— k+ 2(6—1)2 7b + (v(— 1+5)2) .
So, all the simple periodic solutions of Eq.(2) are
\/ék'y 3
_ Vv [ 2
Ws(z) = :I:e’y(z_ZO) — + 2Uk'y, 29 € C,
and
VBk~y(5—-1) V6ksy(5—1)
Wa(z) = o(6—1)2 Vu(6—1)2 V3Eky (6 +1) e
4 e'v(z z0) — 1 ' ev(z—z0) — 7§ 20(0 — 1)2’ 0 )
Now, if you bring in the transformation about z, you will get
V6ky 3
_ Vv /
Ug((E,t) = :te,y(kmaréﬁﬂ)_i_uar((lﬂﬂ)_ZO) 1 + %k% 29 € C,
and
VBk~(5—1) V6kSy(5—1)
V(o 2 \v(6—1)2
u4(a:,t) ==+ (krar([3+1):ffar1(;+1) o) _ 1 + A/(k,zar(ﬁ+1)+n(ar(i1-1)720) ~E
e’ — e o « —e
V3Ey(§ +1) cC
20(6 — 1)2’ '
o
05 \ Zo\‘x 10 er
(a) a=0.2 (b) «=0.5 (¢) «=0.8

1
Figure 2: ugi(x,t) with k=11 = _§’U

The dynamic properties of the simple periodic solution ug
is shown in Fig.2.

71(1},75) =

=4,v=1,8=0.01,2 = 0.

V6ky

NGl
o kzal"ogﬁ+1) T Lt‘lFé‘BJrl)

—z0) _1 +
Both Fig.1 and Fig.2 accurately represent the properties of meromorphic functions in complex space. It

3
3ok

can be clearly seen that there is a line in the figure, and the values on both sides tend to co. This is the line
composed of the poles of meromorphic functions on a two-dimensional complex plane

3.3. Elliptic function solutions



S i;/((zz))jf; +cg, where B? = 4A? — go A; — g3, A; and go

are arbitrary constants. We deduce that ¢y = 0, A; = B; = 0, and then combine it with rantional solutions,

The form of elliptic function solution is W(z) =

we can get c_1; = + G'vﬁ. Naturally, all elliptic function solutions are expressed as

VBEZ of (2 —
Wa(z) = + YL PE 20,00 © e
2\/{) p(z - ZOaQQvo)

and
f6i2 of (RetLB+Y) | HOT(BHD) .g2,0
us(,t) = £ 20 ) (kxaF?ﬁJrl) T (A1) - )’ 20 € C.
U op(—— + " — 20,92,0)
Remark 2. @ has the following definition.

Let wi,wy be two given complex numbers, such that Im=+ > 0,L = L[2wy,2ws] be discrete subset
L2w1,2wy] = {w | w = 2nwy + 2mws,n,m € Z}, which is isomorphic to Z x Z. The discriminant
A = Aler, e2) == ¢} — 27c3 and

1
Spn = 8p(L) := Z —.
wernfo} ¥
The Weierstrass elliptic function p(z) = p(z,g2,93) s a meromorphic function with double periods

2w1, 2wy and satisfying:
[0 (2))? = 4p(2)* — g20(2) — g3,
where ga = 60s4, g3 = 140sg, and A(ga, g3) # 0.

4. Generalized trigonometric solutions with extended direct alge-
braic method

In this section, we simplify the integral constant b to zero. The solutions of nonlinear ordinary differential
equations obtained by extended direct algebraic method [20] can be expressed as W (z) = E;-V:O b (2), by #

0, where Q'(2) = In(A)(A + pQ(2) + 7Q?(2)), A # 0, 1.

For Eq.(2), if the coefficients of the highest order term is balanced, j = 1 can be known. So we suppose
that W(z) = by + b1 Q(z).

Bring W (z) = by + b1Q(z) into Eq.(2), and we obtain Z?:o A;Q(2)" =0, where

1
Ag = b Me3pIn?(A) — gbgkv + bok + bol,
Ay = 200 M3 710 (A) + bik3p? In?(A) — b2b1kv + bk + byl,
Ag = 3b1k3pr In?(A) — bob? kv,
1
Az = 2b1k372 In?(A) — gbikv.
Let A; = 0 to obtain by = i%,bl = iw, and [ = %k (k2 In?(A) (p2 — 4)\7) — 2) . Com-
bining with the definition of Q’(z), some representative solutions of Eq.(2) and Eq.(1) are obtained:

(1) p? —4XT < 0,7 #0

N ANT — p? N ANT — p2
Wg(z):b0+b1(—£+ A tana( A z)),

27 2T 2




AAT — p? AT — p2? kx*T(B+1 iter(g+1
ug(a, 1) =y (2 4 VT (VAT 22 BT L) WP Dy 4,

(2) p? —4AT > 0,7 #0

VpE—4A VpE—4A
Wi(z) = b+ by (— 5= = —Ttanha (M=),

2T

() by (=2 — \/p22; 4,\TtanhA( Vp? 2— 4)\T(kx°‘1“(aﬁ +1) N lt”‘l“(g +1) 1)+ b

0
27 ’

3) AT >0,p=0
Was(z) = bl(\/;am(\/ﬁ)z),

ug(x,t) = bl(\/gtanA(\/ﬁ)(kxar(ﬂ +1) N 1T (8 + 1)))’

« «

(4) A\t <0,p=0
Wy(z) = b1(—1/ %AtanhA(\/ —AT)z),

wol,8) = b tanha () LD TG D)),

« (07

Remark 3. tany and tanh represent generalized triangular and hyperbolic functions [21]:

pAiz _ qA—iz

y B pAmz _ qA—mz
pAzz + qA—iz ’

tanh =
an A(Z) pAmz +qA—mz

tana(z) =

Ifp=qm=1,A=¢e, tany(z) and tanh,(z) degenerate into the general function tan(z) and tanh(z).

(b) =0.5 (¢) =08

Figure 3: ug,1(x,t) with different o.

The properties of generalized functions, such as

V6kT ln(A)( 2N VAT — p? rana( ANT — p? (kxar(ﬂ +1)  UT@E+1)

wsalet) = T 5 . 2rly)
JEkoIn(4)  3In(2) tan (/R0 -200))
+ - _ ’
Vv 7



where p=¢, A=2k=11=-3,0=1p=17=11=18=4, and
V6kTIn(A - ExeT(B 4+ 1)  IeT(8 4+ 1
T e T e ).

9.65106t* — 3.21702z“
= V/61n(5) tanh < - z ) ,

where p=q,A=5,m=2k=1,1=-3,v=1,7=1,A= —1,8 = 0.001, are shown in Fig.3 and Fig.4.

By observing Fig.3 and Fig.4, we can see that when p = ¢, no matter how A and m change, the generalized
triangular and hyperbolic function can still be sorted into a general form, and the images are similar to the
three-dimensional graph of ordinary trigonometric functions.

LT
r

(b) a=0.75 (¢) a=0.9

Figure 4: ug i (x,t) with different c.

5. Numerical solutions with ODM

In this section, we consider searching the approximate numerical solutions of Eq.(2). In addition, the
accuracy of the numerical solutions are determined by comparing them with the exact solutions. Using
ODM [22], the linear approximation function F(L[W], W) of Eq.(2) can be written as

rawl,w) = Lwiey s EEDwe) - Ly
~ Lowio+ (B2 U o).

Here, L = dz2 is a linear differential operator, and L[W(z)] = N[W(z)] + ¢(z). N[W(z)] stands for the
nonlinear terms in Eq.(2) and ¢(z) is a given function. From the above formula we can also derive an
important constant Cy = (’j;” “=W2(0).

Suppose the solution of Eq.(2) is an infinite series W (z) = Y7o, yx(2). Next, our main task is to calculate
yx(2). By ODM, we can do the following calculation:

)= fo(z)

) = f1(2)+ ~H(Qo(2))

2) = 1(Ql( )+ Coyr(2))

) =L
)

“HQk(2) + Colyr(2) — yr-1(2))), k > 2,

L~ is the integral operator, L=! = [~ fo dzdz. Use inverse operator L~ for the formula

LW(z)] = N[W(2)] + ¢(2),



we have

where f(z)

So for Eq.(2), we can figure out

W(z) = L™Y([N[W
= L7 ¢(2)) + W(0) + W'(0)z. Denote fo(z) =

1 d’f
@rl2) = 17 g7 |
Qo(z) = —(k]:y: )
Q1(2) :*(k—H)
@) = D) 1+ 2wy

(2))) + 1(2),

Z 0'yi (2

Moo

() + 57395 (2)
ARORHOME

1(2)% + yo(2)?y2(2))

W(0), f1(z) =

W'(0)z, and

5.1. Obtaining initial values from a meromorphic solution

\/gk% where [ = k(_z%k?'y?)’b _

For example, for the solution in W3(z), we choose W3 1(z) =

0.

Suppose W (z) =

V6k~y

ev(z—zg

3(1+e
Yo(2) = fo(z) = W31(0) = @

yi1(z) =

1—

ez(z+e(z+2)—2)

e

||
Shc\

(e—1)3
/ )+ Coy1(2))dzdz =0
0
) + Co(y2(2) — y1(2))]dzdz

0

3( 3e(1

—18(e — 1)e(1 + €)?2?)

QO\T(e —1)7

RV
)_1+

> oo Uk(2). Let’s assign several values, zo = 1,k =2,y =1,v =4,1 = 2.

fi(z) + //QO )dzdz = W3 1(0 z+//Qo Ydzdz
\[

235(e — 1?1 +e)(1+e(10+e€))z —20(e — 1)3(1 + e(4 + €))

Sort out the results from the above,

WlO(Z) = yO(Z) + yl(Z) + y2<Z) + y3(z) 4o

RGLED

V6ez

\/ge(l + €)2? -

201/6(e — 1)7

e(1+e(d+e))2’ 3

e(1+e)(1+

e(10 +e))z*

o 1—e

(e~ 1)

(e— 1P

V(e —1)*

10

4/6(e — 1)5



5.2. Obtaining initial values from a generalized trigonometric solution

In order to get the numerical solution, we choose

fk:p 6kt ANT —p ANT — p?
We,1( (= \/ Cm( v 7)),
Ju 27 27 2
where p = ¢, A = e to provide the initial values.
Similarly, by ODM, let W (z) = Y 7 ,yx(z) and assign several values, p = 1,A = 1,7 = 1,k = 2,1 =
14,0 = 1.

Yo(2) = fo(z) = We1(0) =0

y1(2) = fi(z) + /OZ /OZ Qo(2)dzdz = Wy 1(0)z = 3\/32

= [ [ @)+ Contenaza =0

_ / /Z[Qz(z)-FCo(yz(Z)—y1(2))]dzdz:Z gz?’
0 Jo

~J

3 5
22}
- /0 /OZ[Q4(Z)+CO(ZJ4(Z)—yg(z))]dzdz:120 225

= [ [ 10s) + Cotusto) etz = o
0 0

O

Sort out the results from the above,

Wii(z) = 1(2) +y2(2) +ys(z) + -

= yo(2) + y1(
AT SN RN S
2 160 160

5.3. Accuracy verification of numerical solutions

We use the first seven terms of the series to make the images of the numerical solutions. As can be seen
from Fig.5, there is little difference between the numerical solutions and the exact solutions in a certain
interval. In order to understand the specific errors between them, Table 1 and Table 2 are listed. From these
data, we can conclude that the accuracy of the numerical solutions obtained in Section 5 can be guaranteed.
And with the increase of series terms, the error will be smaller and smaller.

6. Conclusions

With the help of the properties of truncated M-fractional derivative, a new transformation is proposed,
which is used to change the mBBM equation into ODE. Some meromorphic solutions and generalized trigono-
metric solutions of this equation are calculated by reliable methods. We use ODM to give the numerical
solutions, by comparing them with the exact solutions, we come to the conclusion that the errors of the nu-
merical solutions are acceptable. This also shows the superiority of the new decomposition method proposed
by Zaid odibat in 2019. This is an interesting work, which may attract more scholars’ attention.
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z Wio(z)  Wsi(2) Error
-0.8 | -1.70308 -1.70983 0.00674757
-0.6 | -1.84376 -1.84439 0.000629789
-0.4 | -2.02648 -2.02649  4.80765 x 1076
-0.2 | -2.28051 -2.28051 —4.78092 x 107
0.2 | -3.22344 -3.22345 4.1188 x 1076
0.4 | -4.20291 -4.20423 0.00131685
0.6 | -6.14514 -6.20516 0.0600206
0.8 | -10.7454 -12.2882 1.54286
Table 1: Values and errors (I)
z Wi1(2) We1(2) Error
-0.9 -4.178 -4.19224 0.014244
-0.7 | -2.94003  -2.94144 0.00140814
-0.5 | -1.96118  -1.96126 0.0000729628
-0.3 | -1.12776  -1.12776 1.0526 x 108
-0.1 | -0.368345 -0.368345  2.71545 x 10710
0.1 | 0.368345 0.368345 —2.71545 x 10~ 10
0.3 1.12776 1.12776 —1.0526 x 108
0.5 1.96118 1.96126 -0.0000729628
0.7 2.94003 2.94144 -0.00140814
0.9 4.178 4.19224 -0.014244
Table 2: Values and errors (II)
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Figure 5: Comparison diagram of exact solutions and numerical solutions
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