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Abstract

Let S be a semigroup of singular matrices over a subset of the set of integers. The idempotent
elements of S are classified into tridempotent, fractional idempotent and skew idempotent
elements. Matrices are generally known to be non-commutative but an example of commuta-
tive matrices is established in this work. Matrix multiplication and its axioms are employed
to establish the results. Regularity was first established and the condition for regularity of
each idempotent structure obtained is discussed. Some of the structures obtained are used to
establish bands of regular elements. The fractional component of S is obtained combinatori-
ally by choosing a number with its sign for every row of each matrix. There are m values of
matrices with first and second rows being equal, which are removed from the set since their
multiplication gives zero. The satisfaction of the condition for commutativity implies that all
the matrices have the same characteristic equation and all are of a specified order n. This is
evident in the fact that the product of the principal diagonal, D1 of matrix A is the same as
the product of the principal diagonal D2 of matrix B. Also, the product of the off- diagonal of
matrices A and B are the same.
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1 Introduction

Let S be a non - empty set defined on

Zm = {0,±1,±2, . . .±m},

we define a multiplication
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ab = a(a, b ∈ S)

and obtain a left zero semigroup. An element a of a semigroup S is called regular provided that there exists
b ∈ S such that aba = a. Elements a, b ∈ S form a pair of inverse elements provided that aba = a and
bab = b. Lawson[6] explained the concepts of inverse semigroup. Standard definition of terms and notations
on semigroup are contained in [5] and [7]. Studies like understanding idempotent depth, Idempotent rank
and some other important results on idempotency of some semigroups were obtained by authors like [1], [3],
[4], [8] and [9]. E(S) is the usual notation for the set of idempotents of a semigroup S and TE(S) denotes
tridempotents in this work. Tridempotent element a, is defined as having the property that a3 = a. A square
matrix has its usual meaning and a set of square matrices satisfying certain conditions, as discussed here, is
a semigroup. Richardson[2] defined conjugate matrices as a set satisfying the following conditions:

(i) they are commutative;
(ii) their symmetric functions are scalar matrices which are equal to the corresponding symmetric func-

tions of the scalar roots of the characteristic equation of one of the matrices;
(iii) all the matrices have the same characteristic equation;
(iv) all are of a specified order n.
Four different idempotent structures are obtainable from Zm, two of which form a semigroup, to which

the identity and zero elements can be adjoined. The semigroup RB(Zm, 2) is a set of 2×2 singular matrices,
taken here to be S and the set of matrices, (Zm, 2) is denoted by S. It should be noted that S ⊂ S. The
common feature among the matrices to be classified under various idempotent structures is that for A ∈ S,

if A =

[
a b
c d

]
then ad = bc ̸= 0. Also, k is defined to be | d | − | a |.

The following terms are used to describe idempotents structures of S:
* E denotes idempotent if A2 = A for k = 1;

* F for fractional idempotents, if A2

k = A, k > 1;

* SE is skew-idempotent matrix, if A2 = −kA, k ≥ 1;
* TE(S) is tridempotent, if A3 = A for K = 1 and multiple tridempotent if k > 1.
These terms are observed in the idempotents structures, which are classified into four components as:

The first idempotent structure has the following properties:
a = −b and c = −d; b, d ∈ N ;
A2 = A if k = 1;
A2 = kA if k > 1, which is multiple idempotency;
| d |̸=| a | and | d |>| a |.

The second idempotent structure is classified with the following characteristics:
b = −a and d = −c; a, c ∈ N ;
if | a |>| d | and k ≥ 1, then A2 = kA;
if | a |<| d |, then A2 = −kA, k ≥ 1.
Note that, if A2 = −A,A is skew - idempotent and if A2 = −kA, k > 1 then A is multiple skew -

idempotent.

The third idempotent structure satisfies the following:
c = −a and d = −b; a, b ∈ N ; | a |>| d | and A2 = kA, k ≥ 1.

The fourth and the last idempotent structure satifies the following features:
a = −c and b = −d; c, d ∈ N ; | a |<| d | and A2 = kA, k ≥ 1.

Remark: In the third and fourth idempotent structures, whenever A2

k = A, k > 1, then A is fractional
idempotent.
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1.1 Matrix Algebra of RB(Zm, 2)

The following proposition shows the usual addition and multiplication of matrices on the elements of S.

Proposition 1.1. Let A,B ∈ S, then
• AT ·AT = AT

• (AT )T · (AT )T = A
• A · (AT )T = −A
• A ·AT ̸= AT ·A
• A · −A = −A ·A
• −A ·A = −A
• −A · −A = A
• −A+A = I

Proposition 1.2. If A ∈ S, then (nA)x = nxA.

Proof. Let n, x ∈ N . The proof follows from the fact that Ax = A.

2 Main Results

The matrices with k = 1 from the first two idempotent structures and | a |>| d | in the second structure
form the elements considered as a semigroup, S in this study. The results obtained for S and S are stated
and proved in this section.

Theorem 1. The cardinality of S is 2(m− 1).

Proof. This is simply established from choosing possible values of two consecutive numbers occupying the
two rows of a matrix alternately, applying k = 1. If the identity element is adjoined, as made possible in the
theory of semigroup, then the cardinality will be 2m− 1.

Theorem 2. Let A,B ∈ S, a set of 2× 2 matrices. If B = −A, then AB = BA.

Proof. The computation of eigenvalues relation of matrix A given as
AX = λX
and the eigenvalues relation of matrix B as
BX = βX
show that
λ1 = β1 and λ2 = β2

∀λ1, λ2 ∈ λ and β1, β2 ∈ β.
Then,
λ = β.
⇒ D1 = D2

where the product of the principal diagonal, D1 of matrix A is the same as the product of the principal
diagonal, D2 of matrix B.

Also, the product of the off- diagonal of matrices A and B are the same.
Hence AB = BA.

Theorem 3. If A2 = −A, then A is tridempotent.
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Proof. The statement of this theorem satisfies the condition for commutativity in theorem (2). The second
structure of idempotency on Zm, where k = −1, and skew idempotency shows that, A2 = −A

⇒ A3 = −A ·A = A · −A = A.

Theorem 4. Let A,B ∈ S and k = 1, then S is a regular semigroup.

Proof. One of the characteristics of S is that AB = A and BA = B.
⇒ ABA = (AB)A = AA = A and A(BA) = AB = A
also
BAB = B(AB) = BA = B and (BA)B = BB = B,
since AB ̸= BA.
Commutativity can only be satisfied if B = −A as in theorem (2).

Theorem 5. The semigroup S is not inverse and its idempotents do not commute.

Proof. Theorem (4) has shown that S is regular. Let A ∈ S and B,C ∈ S be inverses of A.
Since ABA = A and ACA = A, then
(ABA)(ACA) = ABAACA = ABACA = ABA = A and
(ACA)(ABA) = ACAABA = ACABA = ACA = A.
Infact, ACA = ABA(C)ABA = AB(ACA)BA = ABABA = ABA = A
and CAC = C.
⇒ AC ̸= CA, hence S is not inverse.
If S is inverse, that is
AC = A and CA = C,
⇒ (AC)(AC) = A(CA)C = AC2 = AC = A (i)
(CA)(CA) = C(AC)A = CA2 = CA = C (ii).
From (i) and (ii)
S does not commute.

Theorem 6. RB(Zm, 2) is a normal semigroup.

Proof. Let A,B,C,D ∈ S. The regular idempotent elements of S satisfy
AB = A∀A,B ∈ S.
ABCD = A(BC)D = A(BD) = AB = A and
ACBD = (AC)(BD) = AB = A.
Hence, ABCD = ACBD

2.1 Transformation on S

Taking any two elements α, β ∈ S, the transformation
γ : S 7→ S defined by αij 7→ βij , i, j ∈ {1, 2} is obtained as follows:
Let α = [

α11 α12

α21 α22

]
and
β = [

β11 β12

β21 β22

]
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then

γ =

[
α11 α12 α21 α22

β11 β12 β21 β22

]
.

The following four possible cases are considered for obtaining γ; j ∈ {1, 2}:
β2j = −α2j , β1j ̸= α1j .
γn ̸= ϕ, n ∈ N. Most importantly, γ2 = γ4. (i)

β1j = −α1j , β2j ̸= α2j .
γn ̸= ϕ, n ∈ N. Also, γ2 = γ4. (ii)

β1j = −α2j , β2j = −α1j .
γn ̸= ϕ, n ∈ N. Here, γ = γ3. (iii)

β1j = α2j , β2j ̸= α1j .
γ2 ̸= ϕ but γ3 = ϕ. (iv)

For example,
if
α = [

4 −4
3 −3

]
and
β = [

−2 2
−3 3

]
then

γ =

[
4 −4 3 −3
−2 2 −3 3

]
,

⇒ γ2 = γ4.
It should be noted that the transformation defined on S is not equivalent to being called a transformation

semigroup.

2.2 On Fractional Idempotent Matrices

Let Zm = {±1,±2, . . .±m} with 2× 2 matrices, denoted by (Zm, 2), possessing the following properties:
If A = [

a b
c d

]
where a, b, c, d ∈ N ;
i. a = -b and c = -d;
ii. ad = bc ̸= 0;
iii. | b |≠| d | and | d |>| b |.
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The matrices formed, emanate from one of the idempotents structures mentioned in the introduction.
The matrices are split into two forms as:

(i) idempotents, E(S), where k =| d | − | a |= 1;
(ii) fractional idempotents, F (S), with k =| d | − | a |> 1.
The following algebraic result explains the relationship between idempotents and fractional idempotent

matrices.

Theorem 7. Let A,B ∈ S, then for k ∈ N :
(i) if A,B ∈ E,AB = A, hence E(S) is a regular semigroup;
(ii) if A ∈ E and B ∈ F,AB = kA;
(iii) if A ∈ F and B ∈ E, AB = A;
(iv) if A,B ∈ F,AB = kA

Proof. (i) The characteristics of a regular semigroup, S as in theorem (1) is that ABA = A,∀A,B ∈ S which
E(S) satisfies, hence it is a regular semigroup.

Taking k =| d | − | a | of matrix B, which is 1 in E. Thus AB = kA = A.
Also, since
ABA = A, assume that AB ̸= A, say AB = C ∈ E then CA = A.
Let BA ̸= B, say BA = D ∈ E, then AD = A.
⇒ ACA = A and ADA = A
⇒ AC = A,CA = C and AD = A,DA = D which is a contradiction.
Hence, for any A,B ∈ E,AB = A and BA = B.
(ii) It is observed that k > 1 in B ⊂ F .
Taking A ∈ E and B ∈ F results in multiples of A.
Hence AB = kA.
(iii) Since k is determined by B and here, k = 1
following the proof of (i), then AB = A.
(iv) The proof of this follows the argument of (ii).

Theorem 8. Let A ∈ F and k ∈ N,An = kn−1A.

Proof. The proof follows theorem 7(ii).

The following theorem explains the cardinalities of E,F and | S |.
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Theorem 9. S is a set of matrices and | S |= m(m−1)
2

Proof. The elements of S are basically idempotents in nature having two components. In the first component,
k = 1 and | d |>| a | for consecutive numbers a and d. The cardinality of the first component, for each
m ∈ N is

| E(S) |= m− 1 (i)
The fractional component, | F (S) | is obtained combinatorially by choosing a number with its sign for

every row of each matrix, meaning choose two out of m + 1 for any m. Note that in fractional idempotent
matrices, | d |>| a |. There are m values of matrices with first and second rows being equal, that is | d |=| a |,
which are removed from the set since their multiplication gives zero. So,

| F (Zm, 2) |=
(
m+1
2

)
− 2m+ 1 (ii)

Combining (i) and (ii), | (S) |=
(
m+1
2

)
−m.

3 Conclusions

The set of matrices, S is categorised into four different idempotent structures. The first two structures with
their identified conditions, are further studied to be regular band semigroup of matrices, RB(Zm, 2). Each
of the structures is regular only if k = 1. This semigroup satisfies the properties of conjugate matrices
according to Richardson[2].

47



References

[1] A. H. Clifford,Bands of semigroups, Proc. Amer. Math. Soc., 5(1954) 499-504.

[2] A.R. Richardson, Conjugate Matrices, The Quarterly Journal of Mathematics, os-7(1)(1936) 256-270,
https://doi.org/10.1093/qmath/os-7.1.256

[3] G. Garba, Idempotents in partial transformation semigroups, Proceedings of the Royal Society of Ed-
inburgh: Section A Mathematics, 116(3-4), (1990)359-366.doi:10.1017/S0308210500031553.

[4] J.M. Howie & R. McFadden, Idempotent rank in finite full transformation semigroups, Pro-
ceedings of the Royal Society of Edinburgh: Section A Mathematics, 114(3-4)(1990) 161-167.
doi:10.1017/S0308210500024355.

[5] J.M. Howie, Fundamentals of semigroups theory, LMS Monographs, New Series, No. 12, Clarendon
Press, Oxford, 1995.

[6] M. V. Lawson, Inverse semigroups, the theory of partial symmetries, World Scientific, 1998.

[7] O. Ganyushkin and V. Mazorchuk, Introduction to classical finite transformation semigroups, Springer
- Verlag London Limited, (2009).

[8] P.M. Higgins, Idempotent depth in semigroups of order-preserving mappings, Proceedings of The Royal
Society A: Mathematical, Physical and Engineering Sciences, 124(1994)1045-1058.

[9] R. Kehinde & A. D. Adeshola, The order of the set of idempotent elements of semigroup of partial
isometries of a finite chain, International Journal of Science and Research, 2(5)(2013) 291 - 292.

48


	Introduction
	 Matrix Algebra of RB(Zm, 2)

	Main Results
	Transformation on S
	On Fractional Idempotent Matrices

	Conclusions

