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Abstract

In this paper, the authors utilized the Galerkin approximation scheme approach to solve a

class of fully coupled forward-backward stochastic partial differential equations in an infinite

dimensional functional setup.
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1. Introduction

Stochastic partial differential equations (SPDEs) arise naturally in many fields of science and engineering
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where the systems of interest are subject to uncertainty [4]. Finding analytical solutions to SPDEs can be

challenging due to their complex and random nature. As a result, numerical methods are often employed to

approximate the solutions to these equations. Forward-backward stochastic differential equations (FBSDEs)

are a class of stochastic differential equations that arise in a wide range of applications, including finance,

engineering, and physics. They consist of a system of coupled equations, where the forward equation describes

the evolution of a process over time, and the backward equation describes the evolution of a related process

in reverse time [14]. One of the challenges in solving FBSDEs is that they typically involve high-dimensional

systems and nonlinearities, making analytical solutions difficult to obtain. As a result, numerical methods

are often employed to approximate the solutions [5, 8]. One approach to approximating FBSDEs is through

Galerkin approximations, which involve projecting the equations onto a finite-dimensional subspace. In

recent years, there has been increasing interest in the development of efficient numerical methods for solving

FBSDEs and Galerkin approximations. These methods have been applied in a range of applications, including

finance, engineering, and physics [6, 3, 1, 2, 9].

In this paper we consider the following forward-backward stochastic partial differential equations (FBSPDEs):

∂tu(t, x) = a

d∑
i,j=1

uxixj
(t, x)dt+ b(t, x,u(t, x),v(t, x))dt

+σ(t, x,u(t, x),v(t, x))dW (t, x)

∂tv(t, x) = −h

d∑
i,j=1

vxixj (t, x)dt+ k(t, x,u(t, x),v(t, x))dt

−Z(t, x)dW (t, x)

u(0, x) = u0(x), and v(T, x) = g(u(T, x)), t ∈ [0, T ], x ∈ G,

(1.1)

where a and h are positive constants, and G is a bounded domain in Rd with smooth boundary conditions.

FBSPDEs can be viewed as a natural extension of FBSDEs. In light of the nonlinear Feynman-Kac formula,

or the Four Step Scheme [10], it is not hard to imagine that the solution of a backward SPDE could be a crucial

device for solving an FBSDE with random coefficients [12, 13]. It has been shown that the solvability of a

large class of non-Markovian FBSDEs is almost equivalent to the solvability of the corresponding backward

stochastic partial differential equations (BSPDEs) [11]. Therefore the solvability of FBSPDEs could be

considered as part of the effort for a full understanding of the solvability of general strongly coupled FBSDEs

with random coefficients. In addition, the interesting structure of FBSPDEs can be used to describe many

natural phenomena. For instance, an application to the reaction-diffusion models is provided in [15]. In the

context of FBSPDEs, Galerkin approximation methods involve expanding the solution of the equation in a

finite-dimensional basis of functions and then solving the resulting system of ordinary differential equations

numerically. This approach allows for efficient and accurate computation of the solution, even for high-
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dimensional problems.

The rest of the paper is organized as follows. In Section 2, we introduce the notations and formulate the

Galerkin approximations. Assumptions and a preliminary result are provided in Section 3. In Section 4, we

apply the Galerkin approximation scheme to establish the main result.

2 Projections and Estimates

Denote ⟨·, ·⟩ the inner product of L2(G). Let | · | be the norm of L2(G) and ∥ · ∥ be the norm of H1
0 (G). They

are given as follows:

|u| ≜
(∫

G

|u|2dx
) 1

2

,

and

∥u∥ ≜
(∫

G

|∇u|2dx
) 1

2

.

For notational simplicity, the norm | · | inside the integral signs is also used to denote the standard norm on

Rn, n ∈ N.

Define the following operator

Lu ≜ −
d∑

i,j=1

uxixj

for any u ∈ L2(G). Let {λk}∞k=1 be a family of nondecreasing unbounded positive numbers such that for each

k, λk is an eigenvalue of the operator L. For every k ∈ N, let ek ∈ H1
0 (G) be a corresponding eigenfunction

such that {ek}∞k=1 forms an orthonormal basis of L2(G). Let {qi}∞i=1 be a family of positive numbers such

that
∑∞

i=1 qi < ∞. Let our Wiener process W to be defined as

W (t, x) ≜
∞∑
i=1

√
qiB

i(t)ei(x),

where {Bi(t)} is a sequence of iid Brownian motions in R. For any u ∈ L2(0, T ;L2(G)), i ∈ N, t ∈ [0, T ] and

x ∈ G, let ⟨u(t, x), ei(x)⟩ = ui(t), and we denote uN (t, x) ≜
∑N

i=1 ui(t)ei(x) and ûN (t) ≜

(
u1(t)

...
uN (t)

)
∈RN , any

N ∈ N. Clearly one has ⟨Lu, ei⟩=λiui. Define λN ≜


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN

 and eN ≜


e1 0 · · · 0

0 e2 · · · 0
...

...
. . .

...

0 0 · · · eN

.

Then λNeN ûN =

(
λ1u1e1

λ2u2e2

...
λNuNeN

)
.
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Let ZN (t, x) ≜
∑N

i=1⟨Z(t, x), ei(x)⟩ei(x) and WN (t, x) ≜
∑N

i=1

√
qiB

i(t)ei(x). Since

⟨
∫ T

t

ZN (s, x)dWN (s, x), ei(x)⟩

=⟨
∫ T

t

dWN (s, x), ZN∗(s, x)(ei(x))⟩

=⟨
N∑

k=1

∫ T

t

√
qkek(x)dB

k(s), ZN∗(s, x)(ei(x))⟩

=

N∑
k=1

∫ T

t

⟨ek(x), ZN∗(s, x)(ei(x))⟩
√
qkdB

k(s),

we define ẐN (t) as


⟨e1(x), (ZN (s, x))∗(e1(x))⟩, ⟨e2(x), (ZN (s, x))∗(e1(x))⟩, · · · , ⟨eN (x), (ZN (s, x))∗(e1(x))⟩

⟨e1(x), (ZN (s, x))∗(e2(x))⟩, ⟨e2(x), (ZN (s, x))∗(e2(x))⟩, · · · , ⟨eN (x), (ZN (s, x))∗(e2(x))⟩

.

.

.

.

.

.

.

.

.

.

.

.

⟨e1(x), (ZN (s, x))∗(eN (x))⟩, ⟨e2(x), (ZN (s, x))∗(eN (x))⟩, · · · , ⟨eN (x), (ZN (s, x))∗(eN (x))⟩


,

Q̂N ≜


q1, 0, · · · , 0

0, q2, · · · , 0
...

...
...

...

0, 0, · · · , qN


and ŴN (t)≜

√
Q̂N ·

 B1(t)

...
BN (t)

.

Let bN ≜
∑N

i=1⟨b, ei⟩ei and b̂N (t, ûN , v̂N )≜

 ⟨bN (t,x,uN ,vN ),e1(x)⟩
...

⟨bN (t,x,uN ,vN ),eN (x)⟩

. Similarly, we can define kN and k̂N .

Let σN ≜
∑N

i=1⟨σ, ei⟩ei and define σ̂N (t, ûN , v̂N ) as
⟨σN (e1), e1⟩, ⟨σN (e2), e1⟩, · · · , ⟨σN (eN ), e1⟩

⟨σN (e1), e2⟩, ⟨σN (e2), e2⟩, · · · , ⟨σN (eN ), e2⟩
...

...
...

...

⟨σN (e1), eN ⟩, ⟨σN (e2), eN ⟩, · · · , ⟨σN (eN ), eN ⟩

 ,

where for notational convenience, we breviate σN (t, x,uN ,vN ) as σN .

For the initial condition, we define uN
0 (x) ≜

∑N
i=1⟨uN

0 (x), ei(x)⟩ei(x) and

ûN
0 ≜

 ⟨uN
0 (x),e1(x)⟩

...
⟨uN

0 (x),eN (x)⟩

 .

For the terminal condition, one defines

vN (T, x) = gN (uN (T, x)) ≜
N∑
i=1

⟨g(uN (T, x)), ei(x)⟩ei(x)
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and

v̂N (T ) = ĝN (ûN (T )) ≜


⟨g(uN (T, x)), e1(x)⟩

⟨g(uN (T, x)), e2(x)⟩

· · ·

⟨g(uN (T, x)), eN (x)⟩

 .

Now we are able to define a projected system as follows:
∂tu

N = −aLuNdt+ bN (t, x,uN ,vN )dt+ σN (t, x,uN ,vN )dWN

∂tv
N = hLvNdt+ kN (t, x,uN ,vN )dt− ZNdWN

uN (0, x) = uN
0 (x), and vN (T, x) = gN (uN (T, x)), t ∈ [0, T ], x ∈ G,

(2.1)

and an equivalent system in RN :
dûN = −aλN ûNdt+ b̂N (t, ûN , v̂N )dt+ σ̂N (t, ûN , v̂N )dŴN

dv̂N = hλN v̂Ndt+ k̂N (t, ûN , v̂N )dt− ẐNdŴN

ûN (0) = ûN
0 , and v̂N (T ) = ĝN (ûN (T )), t ∈ [0, T ].

(2.2)

3 Assumptions

Let us assume the following assumptions through out this paper.

(A.1) Suppose that for every t > 0, b, σ and k are continuous, and they are Ft-progressively measurable pro-

cesses such that for any u and v ∈ L2(G), they are in L2
F (Ω;L

2(0, T ;L2(G))) and L2
F (Ω;L

2(0, T ;LQ)),

respectively. The function g is linear and continuous, and for every u ∈ L2(G), g(u) is in L2
FT

(Ω;L2(G)).

(A.2) There exists a constant c1 > 0, such that for every t > 0 and u, v ∈ L2(G),

|b(t, ·, u, v)|+ ∥σ(t, ·, u, v)∥LQ
+ |k(t, ·, u, v)|

≤|b(t, ·, 0, 0)|+ ∥σ(t, ·, 0, 0)∥LQ
+ |k(t, ·, 0, 0)|+ c1|u|+ c1|v|

and

|g(u)| ≤ |g(0)|+ c1|u|, P-a.s.

(A.3) There exists a constant c2 > 0, such that for every u, u′, v, v′ ∈ L2(G), and z, z′ ∈ LQ,

− a⟨L(u− u′), v − v′⟩+ ⟨b(t, ·, u, v)− b(t, ·, u′, v′), v − v′⟩

+ ⟨σ(t, ·, u, v)− σ(t, ·, u′, v′), z − z′⟩LQ
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+ h⟨L(v − v′), u− u′⟩+ ⟨k(t, ·, u, v)− k(t, ·, u′, v′), u− u′⟩

≤ − c2|u− u′|2 − c2|v − v′|2 − c2∥z − z′∥2LQ

and

⟨g(u)− g(u′), u− u′⟩ ≤ −c2|u− u′|2, P-a.s.

(A.4) For any u, u′, v, v′ ∈ H1
0 (G), and some constants δ and β, and nonpositive constants η and α, the

monotonicity conditions hold:

− 2a⟨L(u− u′), u− u′⟩+ 2⟨b(t, x, u, v)− b(t, x, u′, v′), u− u′⟩

+ ∥σ(t, x, u, v)− σ(t, x, u′, v′)∥2LQ
≤ δ|u− u′|2 + η|v − v′|2

and

− h⟨L(v − v′), v − v′⟩ − ⟨k(t, x, u, v)− k(t, x, u′, v′), v − v′⟩

≤α|u− u′|2 + β|v − v′|2.

Under the assumptions, the following result is easy to obtain.

Theorem 3.1. Assume that (A.1)-(A.3) hold. System (2.2) has a unique adapted solution (ûN , v̂N , ẐN )

such that

E( sup
t∈[0,T ]

|ûN (t)|2) + E

∫ T

0

⟨λN ûN (t), ûN (t)⟩dt

+E( sup
t∈[0,T ]

|v̂N (t)|2) + E

∫ T

0

⟨λN v̂N (t), v̂N (t)⟩dt

+E

∫ T

0

tr(ẐN (t)Q̂N (ẐN (t))∗)dt ≤ K

for some constant K, independent of N ∈ N.

Equivalently, the projected system (2.1) also has a unique adapted solution (uN ,vN , ZN ) with.

E( sup
t∈[0,T ]

|uN (t, x)|2) + E

∫ T

0

∥uN (t, x)∥2dt

+E( sup
t∈[0,T ]

|vN (t, x)|2) + E

∫ T

0

∥vN (t, x)∥2dt

+E

∫ T

0

∥ZN (t, x)∥2LQ
dt ≤ K.

Proof. Based on assumptions (A.1)-(A.3), the existence and uniqueness of the solution of system (2.2)

is guaranteed by the main results in [7]. The regularity can be obtained using standard method. The

equivalence of (2.1) and (2.2) yields the second half of the theorem.
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4 The Galerkin Approximation

Now we are ready to provide the main result of this paper.

Theorem 4.1. Assume that (A.1)-(A.4) hold. System (1.1) has an adapted solution (u,v, Z) in the space{
L2
F (Ω;L

∞([0, T ];L2(G))) ∩ L2
F (Ω;L

2(0, T ;H1
0 (G)))

}
×
{
L2
F (Ω;L

∞([0, T ];L2(G))) ∩ L2
F (Ω;L

2(0, T ;H1
0 (G)))

}
×L2

F (Ω;L
2(0, T ;LQ)).

Proof. Step 1: It is shown in Theorem 3.1 that {uN}∞N=1 and {vN}∞N=1 are uniformly bounded in L2
F (Ω;L

2(0, T ;H1
0 (G))).

Thus along a subsequence,

uN w−→ u and vN w−→ v

in L2
F (Ω;L

2(0, T ;H1
0 (G))). Denote

SN (t, x, u, v) = −aLu+ bN (t, x, u, v)

and

TN (t, x, u, v) = hLv + kN (t, x, u, v).

Under assumption (A.1)-(A.2), b and k are uniformly bounded, and L is linear, we know that P-almost

surely,

SN (t, x,uN ,vN )
w−→ S(t, x) and TN (t, x,uN ,vN )

w−→ T (t, x)

in L2
F (Ω;L

2(0, T ;H1
0 (G))) along a subsequence. Also it is clear that

ZN w−→ Z and σN (t, x,uN ,vN )
w−→ σ(t, x) in L2

F (Ω;L
2(0, T ;LQ)),

P-almost surely. For every t, we define

Lt : L
2
F (Ω;L

2(0, T ;LQ)) → L2
F (Ω;L

2(0, T ;H−1))

Lt(M(·)) →
∫ T

t

M(s)dW (s, x).

Then by Burkholder-Davis-Gundy’s inequality,

E

∫ T

0

∥Lt(M(·))∥2H−1dt

≤TE sup
0≤t≤T

|Lt(M(·))|2
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≤2TE|
∫ T

0

M(s)dW (s, x)|2 + 2TE sup
0≤t≤T

|
∫ t

0

M(s)dW (s, x)|2

≤4TE sup
0≤t≤T

|
∫ t

0

M(s)dW (s, x)|2

≤4TCE

∫ T

0

∥M(s)∥2LQ
ds

for some constant C. This shows that Lt is a bounded linear operator. Hence Lt maps weakly convergent

sequence {ZN}∞N=1 to a weakly convergent sequence {
∫ T

t
ZN (s)dWN (s, x)}∞N=1 in L2

F (Ω;L
2(0, T ;H−1))

with the limit
∫ T

t
Z(s)dW (s, x), P-a.s. Here we have used the fact that∫ T

t

ZN (s)dW (s, x) =

∫ T

t

ZN (s, x)dWN (s)

by letting ZN (t)(ei)=0 for i > N . Similarly, we can show that∫ t

0

σN (s, x,uN ,vN )dWN (s, x)
w−→
∫ t

0

σ(s, x)dW (s, x)

in L2
F (Ω;L

2(0, T ;H−1)), P-.a.s., ∫ t

0

SN (s, x,uN ,vN )ds
w−→
∫ t

0

S(s, x)ds

in L2
F (Ω;L

2(0, T ;H−1)), P-a.s., and∫ t

0

TN (s, x,uN ,vN )ds
w−→
∫ t

0

T (s, x)ds

in L2
F (Ω;L

2(0, T ;H−1)), P-a.s. It is clear that by assumption (A.2), for any w =
∑∞

i=1 wiei ∈ L2(G) and

M ∈ N,

⟨gN (uN (T, x))− g(u(T, x)),w⟩

=⟨gN (uN (T, x))− g(u(T, x)),

M∑
i=1

wiei⟩

+ ⟨gN (uN (T, x))− g(u(T, x)),

∞∑
i=M+1

wiei⟩

≤⟨gN (uN (T, x))− g(u(T, x)),

M∑
i=1

wiei⟩

+
(
|g
(
uN (T, x)− u(T, x)

)
|+ |g(u(T, x))|

)
|

∞∑
i=M+1

wiei|

≤⟨gN (uN (T, x))− g(u(T, x)),

M∑
i=1

wiei⟩

+
(
|g(0)|+ c1|uN (T, x)− u(T, x)|+ |g(u(T, x))|

)
|

∞∑
i=M+1

wiei|.
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By the linearity of g and the regularity of uN , we see that gN (uN (T, x)) converges weakly to g(u(T, x)) in

L2
F (Ω;L

2(0, T ;L2(G))). Thus one has

uN (t, x) = uN
0 (x) +

∫ t

0

SN (s, x,uN ,vN )ds+

∫ t

0

σN (s, x,uN ,vN )dWN (s, x)

w−→ u0(x) +

∫ t

0

S(s, x)ds+

∫ t

0

σ(s, x)dW (s, x) (4.1)

and

vN (t, x) = gN (uN (T, x))−
∫ T

t

TN (s, x,uN ,vN )ds+

∫ T

t

ZN (s, x)dWN (s, x)

w−→ g(u(T, x))−
∫ T

t

T (s, x)ds+

∫ T

t

Z(s, x)dW (s, x) (4.2)

in L2
F (Ω;L

2(0, T ;H−1(G))), P-a.s. This also shows that

u(t, x) = u0(x) +

∫ t

0

S(s, x)ds+

∫ t

0

σ(s, x)dW (s, x), P-a.s. (4.3)

and

v(t, x) = g(u(T, x))−
∫ T

t

T (s, x)ds+

∫ T

t

Z(s, x)dW (s, x), P-a.s. (4.4)

For notational simplicity, we denoted the index of the subsequences by N again.

Step 2: In the monotonicity condition (A.5), for any u′, v′∈H1
0 (G), one has

2E

∫ T

0

⟨SN (s, x,uN ,vN )− SN (s, x,u′,v′),uN − u′⟩ds

+ E

∫ T

0

∥σN (s, x,uN ,vN )− σN (s, x,u′,v′)∥2LQ
ds

≤E

∫ T

0

δ|uN − u′|2ds+ E

∫ T

0

η|vN − v′|2ds.

Let us first discuss the situation when δ = 0. Rearranging the terms, one gets

2E

∫ T

0

⟨SN (s, x,uN ,vN ),uN ⟩ds− E

∫ T

0

η|vN |2ds

+ E

∫ T

0

∥σN (s, x,uN ,vN )∥2LQ
ds

≤2E

∫ T

0

{
⟨SN (s, x,uN ,vN )− SN (s, x,u′,v′),u′⟩+ ⟨SN (s, x,u′,v′),uN ⟩

}
ds

+ E

∫ T

0

{
−∥σN (s, x,u′,v′)∥2LQ

+ 2⟨σN (s, x,uN ,vN ), σN (s, x,u′,v′)⟩LQ

}
ds

+ ηE

∫ T

0

{|v′|2 − 2⟨vN ,v′⟩}ds. (4.5)
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Applying the Itô formula to equation (4.1) to get

E|uN (T, x)|2 − E|uN
0 (x)|2

=2E

∫ T

0

⟨SN (s, x,uN ,vN ),uN ⟩ds+ E

∫ T

0

∥σN (s, x,uN ,vN )∥2LQ
ds.

Thus (4.5) becomes

E|uN (T, x)|2 − E|u0(x)|2 − E

∫ T

0

η|vN |2ds

≤2E

∫ T

0

{
⟨SN (s, x,uN ,vN )− SN (s, x,u′,v′),u′⟩+ ⟨SN (s, x,u′,v′),uN ⟩

}
ds

+ E

∫ T

0

{
−∥σN (s, x,u′,v′)∥2LQ

+ 2⟨σN (s, x,uN ,vN ), σN (s, x,u′,v′)⟩LQ

}
ds

+ ηE

∫ T

0

{|v′|2 − 2⟨vN ,v′⟩}ds. (4.6)

Since η ≤ 0, taking the limit inferior on both sides of (4.6) yields

E|u(T, x)|2 − E|u0(x)|2 − E

∫ T

0

η|v|2ds

≤2E

∫ T

0

{
⟨S(s, x)− (−aLu′ + b(s, x,u′,v′)),u′⟩

+ ⟨−aLu′ + b(s, x,u′,v′),u⟩
}
ds

+ E

∫ T

0

{
−∥σ(s, x,u′,v′)∥2LQ

+ 2⟨σ(s, x), σ(s, x,u′,v′)⟩LQ

}
ds

+ ηE

∫ T

0

{|v′|2 − 2⟨v,v′⟩}ds. (4.7)

An application of the Itô formula to (4.3) yields

E|u(T, x)|2 − E|u0(x)|2

=2E

∫ T

0

⟨S(s, x),u⟩ds+ E

∫ T

0

∥σ(s, x)∥2LQ
ds.

Replacing the left hand side of (4.7) using the above equality, one obtains

2E

∫ T

0

⟨S(s, x),u⟩ds+ E

∫ T

0

∥σ(s, x)∥2LQ
ds− E

∫ T

0

η|v|2ds

≤2E

∫ T

0

{
⟨S(s, x)− (−aLu′ + b(s, x,u′,v′)),u′⟩

+ ⟨−aLu′ + bN (s, x,u′,v′),u⟩
}
ds

+ E

∫ T

0

{
−∥σ(s, x,u′,v′)∥2LQ

+ 2⟨σ(s, x), σ(s, x,u′,v′)⟩LQ

}
ds

+ ηE

∫ T

0

{|v′|2 − 2⟨v,v′⟩}ds. (4.8)
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Rearranging the terms, one gets

2E

∫ T

0

⟨S(s, x)− (−aLu′ + b(s, x,u′,v′)),u− u′⟩ds

+ E

∫ T

0

∥σ(s, x)− σ(s, x,u′,v′)∥2LQ
ds

≤E

∫ T

0

η|v − v′|2ds.

Taking u′ = u and v′ = v, the above inequality becomes

E

∫ T

0

∥σ(s, x)− σ(s, x,u,v)∥2LQ
ds ≤ 0,

which implies

σ(s, x) = σ(s, x,u,v), P-a.s.

Taking u′ = u− εw and v′ = v, where w ∈ L∞([0, T ]× Ω;H1
0 (G)) and ε > 0, one gets

E

∫ T

0

⟨S(s, x)− (−aL(u− εw) + b(s, x,u− εw,v)),w⟩ds ≤ 0.

Letting ε ↓ 0, since b is a smooth operator, one has

E

∫ T

0

⟨S(s, x)− (−aLu+ b(s, x,u,v)),w⟩ds ≤ 0

for all w ∈ L∞([0, T ]× Ω;H1
0 (G)). This means

S(s, x) = −aLu+ b(s, x,u,v), P-a.s.

Combining with (4.3), we have

u(t, x) =u0(x) +

∫ t

0

(
−aLu+ b(s, x,u,v)

)
ds

+

∫ t

0

σ(s, x,u,v)dW (s, x), P-a.s. (4.9)

For the case when δ is not equal to 0, simply replace SN in (4.5) by SN −δ. The same result can be obtained

similarly.

Step 3: Now let us consider the backward component of the system. For any u′, v′∈H1
0 (G), one has

E

∫ T

0

⟨−TN (s, x,uN ,vN ) + TN (s, x,u′,v′),vN − v′⟩ds

≤E

∫ T

0

α|uN − u′|2ds+ E

∫ T

0

β|vN − v′|2ds.

Similarly, we only discuss the case when β = 0. Rearranging the terms, one gets

2E

∫ T

0

⟨−TN (s, x,uN ,vN ),vN ⟩ds− 2E

∫ T

0

α|uN |2ds
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≤2E

∫ T

0

{
⟨TN (s, x,u′,v′)− TN (s, x,uN ,vN ),v′⟩ − ⟨TN (s, x,u′,v′),vN ⟩

}
ds

+ 2αE

∫ T

0

{|u′|2 − 2⟨uN ,u′⟩}ds. (4.10)

Applying the Itô formula to equation (4.2) to get

− E|vN (T, x)|2 + E|vN (0, x)|2 + E

∫ T

0

∥ZN (s, x)∥2LQ
ds

=− 2E

∫ T

0

⟨TN (s, x,uN ,vN ),vN ⟩ds.

Thus (4.10) becomes

− E|gN (uN (T, x))|2 + E|vN (0, x)|2 + E

∫ T

0

∥ZN (s, x)∥2LQ
ds

− 2E

∫ T

0

α|uN |2ds

≤2E

∫ T

0

{
⟨TN (s, x,u′,v′)− TN (s, x,uN ,vN ),v′⟩ − ⟨TN (s, x,u′,v′),vN ⟩

}
ds

+ 2αE

∫ T

0

{|u′|2 − 2⟨uN ,u′⟩}ds. (4.11)

Since α ≤ 0, taking the limit inferior on both sides of (4.11) yields

− E|g(u(T, x))|2 + E|v(0, x)|2 + E

∫ T

0

∥Z(s, x)∥2LQ
ds

− 2E

∫ T

0

α|u|2ds

≤2E

∫ T

0

{
⟨hLv′ + k(t, x,u′,v′)− T (s, x),v′⟩ − ⟨hLv′ + k(t, x,u′,v′),v⟩

}
ds

+ 2αE

∫ T

0

{|u′|2 − 2⟨u,u′⟩}ds. (4.12)

An application of the Itô formula to (4.4) yields

− E|g(u(T, x))|2 + E|v(0, x)|2 + E

∫ T

0

∥Z(s, x)∥2LQ
ds

=− 2E

∫ T

0

⟨T (s, x),u⟩ds.

Replacing the left hand side of (4.12) using the above equality, one obtains

− 2E

∫ T

0

⟨T (s, x),u⟩ds− 2E

∫ T

0

α|u|2ds

≤2E

∫ T

0

{
⟨hLv′ + k(t, x,u′,v′)− T (s, x),v′⟩ − ⟨hLv′ + k(t, x,u′,v′),v⟩

}
ds

+ 2αE

∫ T

0

{|u′|2 − 2⟨u,u′⟩}ds. (4.13)
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Rearranging the terms, one gets

E

∫ T

0

⟨−T (s, x) + hLv′ + k(t, x,u′,v′),v − v′⟩ds

≤E

∫ T

0

α|u− u′|2ds.

Taking u′ = u and v′ = v − εw, where w ∈ L∞([0, T ]× Ω;H1
0 (G)) and ε > 0, one gets

E

∫ T

0

⟨−T (s, x) + hL(v − εw) + k(t, x,u,v − εw),w⟩ds ≤ 0.

Letting ε ↓ 0, since k is a smooth operator, one has

E

∫ T

0

⟨−T (s, x) + hLv + k(t, x,u,v),w⟩ds ≤ 0.

for all w ∈ L∞([0, T ]× Ω;H1
0 (G)). This means

T (s, x) = hLv + k(t, x,u,v), P-a.s.

Combining with (4.4), we have

v(t, x) = g(u(T, x))−
∫ T

t

(hLv + k(t, x,u,v))ds

+

∫ T

t

Z(s, x)dW (s, x), P-a.s. (4.14)

Together with (4.9), we have showed that (u,v, Z) is an adapted solution to system (1.1).
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