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Abstract: 

In this paper, generalized Darboux transformation for an inhomogeneous fifth-order nonlinear 
Schrödinger equation from Heisenberg ferromagnetism are constructed according to which rouge wave 
solutions of the equation are obtained. Influences of equation parameter on the evolution of rogue waves are 
discussed. With the aid of Mathematica, some special solutions are graphically illustrated which could help to 
better understand the evolution of rogue waves. 
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1  Introduction 

 The concept of rogue wave first appeared in studies of deep ocean waves [1-3] and gradually transfer to other 

fields such as optics [4-6], Bose-Einstein condensates [7-9], plasmas [10, 11], etc. Rogue waves are localized in both 

space and time, appear from nowhere and disappear without a trace [12]. 

Nonlinear Schrödinger (NLS) equations could describe a large number of important phenomena and dynamic 

processes in physics, chemistry, biology and computer science [13, 14]. Hence the explicit solutions of NLS equation 

play a vital role in practical applications. Searching exact solutions of NLS equation is one of the hot topics in nonlinear 

science. 

To search rogue wave solutions of the NLS equation, there are two main approaches available: a method based 

on Wronskian determinants which could be seen in [15-18], and the generalized Darboux Transformation (gDT) method 

[19-22], which will be used in this paper to investigate an inhomogeneous fifth-order NLS equation from Heisenberg 

ferromagnetism. 

Among the nonlinear integrable systems, the Heisenberg ferromagnetic equation [23] is a model describing the 

nonlinear dynamics of magnets. The model can be applied to spintronic devices such as magnetic-field sensors and high-

density data storage [24-26]. In [26], the nonlinear spin dynamics of a site-dependent ferromagnet with inhomogeneous 

exchange interaction in the presence of relativistic Gilbert damping have been studied. The influences of inhomogeneity 

and damping on the evolution of energy of the magnetization are also demonstrated in [26]. Soliton solution of an 

inhomogeneous fifth-order nonlinear Schrödinger equation from Heisenberg ferromagnetism with variable coefficients 

have been given in [27]. In this paper, we consider the following inhomogeneous fifth-order NLS equation  

 

,0=||2)|(|10||3020||10 224*2
xxxxxxxxxxxxxxxxxt iqqqqqqiqqiqqqiqqiqiiq   (1) 

 where ),(= txqq  is is a complex function, x  and t  denote the spatial coordinate and scaled time,   is a perturbation 

parameter, the asterisk represents the complex conjugate. Lax pair and classical Darboux Transformation (cDT) of Eq. 

(1) can be found in [23, 27]. 

cDT is a technique to iterate the soliton solutions [27-30], but it cannot be constructed at the same spectral 

parameter [22, 27, 31]. In order to overcome this difficulty, gDT has been proposed via the Taylor expansion and a 

limiting process [31]. So far, gDT has successfully been applied to construct the rogue wave solutions of various 

nonlinear evolution equations such as the Hirota and coupled Hirota equations [32, 33], the coupled nonlinear 

Schrödinger equations [34], the AB equation [35], the Kundu-Eckhaus equation [36], etc. 

The main purpose of this paper is to apply gDT to investigate rogue wave solutions for the equation (1). In 

Section 2, Lax pair and gDT matrix of the equation are given. In Section 3, rogue wave solutions for the equation are 

derived via the gDT. Discussion and conclusion are given in the last section. 

http://www.scitecresearch.com/journals
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2  gDT for the fifth-order NLS equation (1)  
The inhomogeneous fifth-order NLS equation (1) is the compatibility of the following Lax pair:  

 ,=,=  VU xt  (2) 

 

 where 
T),(= 21   is a vector eigenfunction and T  represents the transpose of a matrix. 1  and 2  are 

the functions of x  and t . The matrices U  and V  are given by 
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 and   is a parameter independent of x  and t . It is easy to verify that equation (1) can be reproduced from the 

compatibility condition 0=VUUVVU xt  . 

In order to construct the cDT for Lax pair (2), we suppose that 
[0]q  is a seed solution of the equation (1). Let 

T),( 1211   is a solution of the Lax pair (2) at 
[0]

1 =,= qq  . It is obvious that 
T),( *

11

*

12   is also a solution of the 

Lax pair (2) with 
[0]*

1 =,= qq . The cDT matrix 
[1]M  can be constructed as [27, 37]  
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where I  denotes the 22  identity matrix, 
1[1])( H  is the inverse of 

[1]H . The superscript )1,2,=(][ ii  

denotes the i -th cDT of matrix and function. With the help of the symbolic computation [38], it can be discovered that 

the form of Lax pair (2) keeps unchanged under the operation of matrix 
[1]M . Through computation, we can acquire 

[1]q  as  
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Based on the above cDT, the gDT for the equation (1) can be constructed. Supposing )( 1    is a special 

solution of the Lax pair (2) with 
[0]

1 =,= qq  , where   is a small parameter. Expanding )( 1    in the 

Taylor series at 0= , we have  
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with 
[0]

1 =,= qq . 

The first-order gDT can be constructed via Eqs. (4) and (5) with the above procedure for constructing cDT. 

It can be shown that )(| 1
1

=

[1]  M  is a solution of the Lax pair (4) with 
[1]

1 =,= qq  . With 

the help of the identity 0=| 0
1
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[1] M  [31], the limit process  
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 provides a nontrivial solution of the Lax pair  (2) with 
[1]

1 =,= qq , which can be used to obtain the second-order 

gDT matrix 
[2]M  as  
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The second-order solutions for the equation (1) can be constructed as  
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 gives a nontrivial solution of the Lax pair (2) with 
[2]

1 =,= qq , which can be used to construct the third-order gDT 

matrix 
[3]M , i.e.,  
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The third-order solutions for equation (1) can be given by  

 .
)2(

=
*

3232

*

3131

*

3132

*

11[2][3]








qq  (11) 

 In a similar way, the N th-order gDT can be constructed following the above process. 

3   Rogue wave solutions of the fifth-order NLS equation (1) 
   With the aid of gDTs obtained in Section 2, we can construct the rogue wave solutions for equation (1). Let us 

start with the seed solution  
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 where  
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 Taking 
21= fs  , the vector function )( f  can be expanded as a Taylor series at 0=f , namely,  
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 and 
T),(= 22211  , 

T),(= 32312   are listed in Appendix A. 

According to Eqs. (4) (11), we can obtain the first- and second-order rogue wave solutions for system (1). The 

first-order rogue wave solution is as follows 

  

 
 

.
148240202403600

34168240202403600
=

22222

222222
[1]





xtxtxttt

xittxtxtttie
q

it




 (17) 

The second-order rouge wave solution is presented in Appendix B. 

 

4  Discussion and conclusion 
Based on the rogue wave solutions acquired above, and with the aid of Mathematica, we can investigate the properties of 

rogue waves for equation (1). The first- and second-order rogue waves are displayed in Fig.1. 

  

     

Fig.1.  Plot of |||,| [2][1] qq  with 0.0001=  

Fig.2. and Fig.3. show that parameter   affects the travelling speed of the first- and second-order rogue waves. 

The rogue waves with bigger   travel faster. 
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Fig.2.  Effect of   on the travelling of || [1]q . 

 

 

 

 Fig.3.  Effect of   on the travelling of || [2]q .   

Fig.4. shows the evolution of first-order rogue wave for system (1) with 0.001= . 
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    Fig.4.  Evolution of the first-order rogue wave.  

Fig.5. shows the evolution of second-order rogue wave for system (1) with 0.001= . 
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 Fig.5.  Evolution of the second-order rogue wave.  

 

Fig.4 and Fig.5 show that the rogue waves of equation (1) have the typical evolution property of "appear from 

nowhere and disappear without a trace" [12]. 

In summary, we have investigated an inhomogeneous fifth-order nonlinear Schrödinger equation from 

Heisenberg ferromagnetism. Starting from the Lax pair (2), we obtained gDTs (4) (11) for equation (1). The first- and 

second-order rogue wave solutions for equation (1) were then derived via the gDTs. Properties of the rogue waves have 

been graphically analyzed and the influences of equation parameter   on the propagation of first and second-order rogue 

waves were discussed. The results obtained in this paper will help to better study the rogue waves in Heisenberg 

ferromagnetism. 
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Appendix A  

The expressions for  

 

The expressions for   
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 Appendix B 

The Second-order rogue wave solutions are 
[2]

2

[2]

1[2] =
s

s
q ,  where 
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