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Abstract. The paper focuses on a matrix operator, which maps a square real matrix to a block matrix (called 

the saddle point matrix), where the left-up block represents the given matrix, the right-down block is zero, and 
two other blocks are vectors of ones. The operator transforms any symmetric matrix into the Karush-Kuhn-
Tucker matrix of standard quadratic program on the standard simplex, which is the intersection of a hyper-
plane with the positive orthant. There are shown some properties of this matrix operator, connections with 
game theory and necessary and sufficient conditions for existence of unique interior optimizer of standard qu-
adratic program.  
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Introduction.  

Optimization is very rich source of algebra problems, and constrained optimization is the concept most central to eco-

nomics that is inherently a framework for studying a world in which individuals or firms make decisions that are best for 

them with respect to given the inherent limitations, like time or money. Since the constraint imposes restrictions on the 

domain of the objective function, so the solution to a constrained optimization problem is the optimum value that the 

function takes on over the restricted part of the domain that is consistent with the constraint. It is the reason that uncon-

strained minimum and maximum is typically smaller and larger, respectively, and the constrained and unconstrained so-

lutions often do not match up. 

Quadratic forms and standard quadratic problem have many applications in such different fields as, for instance, 

graph theory [2], [6], [13], [14], modeling and simulations of dynamical systems [15], knot theory [1], [8] or game theory 

[5]. 

In the paper will be used standard notation; if A = (aij)R
n, n

 is a symmetric matrix (A = A
T
) and x denotes a 

column n-vector, then the quadratic form associated to A is the mapping F: x → x
T
Ax, which produces a quadratic poly-

nomial in the n variables of x. Any applicability and generality is not lost by symmetric assumption, because if A is not 

symmetric, then the matrix M = 
2

T
AA 

 is symmetric, and for any x we have F(x) = x
T
Ax = x

T
Mx. 

Let Δ be the standard simplex of R
n
, which is the intersection of the (n–1)-dimensional hyperplane with the posi-

tive orthant: 

  Δ = {xR
n
: e

T
x = 1, xi ≥ 0 for all i = 1, …, n},  

where e = [1, …, 1]
T
R

n
. 

The standard quadratic program is written as 
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Optimize {F(x) = x
T
Ax ׀ x Δ}                     (1) 

Since we consider the standard quadratic program as a nonlinear constrained program, where the objective func-

tion is a quadratic form and the constraint is a linear function of the design variables, then the side constraint g(x) = e
T
x is 

both quasi-convex and quasi-concave, simultaneously convex and concave. Convexity (concavity, respectively) is impor-

tant in optimization because a convex (concave, respectively) function has no local minima (maxima, respectively) that 

are not global. When the objective F(x) is strictly convex (concave, respectively) for all feasible points then the problem 

(1) has a unique local minimum (maximum, respectively) which is also global. Recall that a sufficient condition to guar-

antee strictly convexity (concavity, respectively) is for A to be positive (negative, respectively) definite. 

It is known that the second-order characterization of convexity states that if the function f(x) is twice differenti-

able on an open set S, then 

2 f(x) > 0  <=>  f(x) is convex for any xS. 

Recall specialization the first-order necessary conditions to the standard quadratic program. These conditions are 

sufficient for a global minimum when A is positive definite (eigenvalues are all positive). Otherwise, the most one can 

said is that they are necessary. The KKT conditions characterize a multiplier λ, called often the KKT multiplier at a feas-

ible optimum x* by 

1.  g(x*) = 1 (feasibility) 

2.  F(x*) = λ g(x*) (stationarity) 

where g(x*) = e
T
x*. 

The first condition states that x* has to be a feasible solution. The second condition in geometric interpretation 

states that the gradients of F(x) and the bound g(x) must point in the same direction at x*. This means that the gradient 

vectors of F(x) and g(x) must be parallel, though they may have different lengths. Since F(x*) = λg(x*) it is equivalent to 

saying that the gradient  F(x
*
) of the objective function is normal to the tangent surface g(x) = 1 at an optimal x*. 

From optimization point of view the value of the multiplier at the solution x* of the problem is equal to the rate 

of change in the optimal value of the objective function as the constraint is relaxed. In mathematical economics the value 

of the multiplier is interpreted as the shadow price of the constraint. This means that if the constraint is changed by one 

unit, the multiplier informs how much the objective function will change by. Thus, for instance, the multiplier measures 

the marginal utility of income (more precisely, the rate of increase in maximized utility as income is increased) in the 

case of a customer choice problem. Obviously, functions F(x), g(x) have in (1) continues second-order partial derivatives 

at any point. 

The KKT rule is very familiar to Lagrange rule. But KKT conditions are surprisingly strong. They distinguish 

minima from maxima as well. It is the reason they can be said to be more powerful then their Lagrange counterparts. 

KKT point is called a feasible point that satisfies the KKT conditions. A point is called regular if the Jacobian of 

the binding constraints at that point is of full rank. In (1) we have J(x) =  g(x) = e, and the point x* always is regular. 

Results 

 A convenient way of checking the sufficient condition is to construct a KKT matrix, also referred to as bordered Hes-

sian, and defined as the block matrix 

 








0)(

)()(
T

xJ

xJxH
, 

where J(x) is the Jacobian of the given constraints and H(x) is the partial of the gradient of the objective function (Hes-

sian). Young’s Theorem which establishes symmetry of the Hessian is valid for the KKT matrix as well. If the objective 

function has the form F(x) = x
T
Ax, and the constraint g(x) = e

T
x, where e

T
x = 1, then the matrix operator  

  AM
n, n 

→ (A, e) = 








0T
e

eA
M

n+1, n+1
 

leads to the KKT matrix. 

It is well known that the second conditions for a minimum (maximum) of (1) states that the border-preserving 

principal minors of order r of the KKT matrix (A, e) are negative (have the sign (–1)
r + 1

, respectively) for r = 2, 3, …, n + 

1. 
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Let Ai stands for the matrix of A with the i-th column replaced by the vector e and M/A denotes the Schur com-

plement of A in M. Recall that the inertia of any symmetric matrix A, denoted by Inertia(A), is an ordered triple 

  Inertia(A) = (i+, i–, i0), 

where i+, i– and i0 mean, respectively, the number of positive, negative and zero eingenvalues of A. 

 It is known that the KKT matrix (A, e) is inevitable indefinite, i.e. it must have at least one positive and one 

negative eigenvalue. 

The lemma below establishes some properties of the matrix (A, e), especially whenever it contains a linear com-

bination of A and E = ee
T
. Note that in the lemma it is not assumed that the matrix A is symmetric, except in (5).  

Lemma. If A, ER
n, n

, then for any real number α the following equalities hold 

det(A + αE, e) = det(A, e),               (2) 

  det(Α + αE) = detA – α∙det(A, e),                      (3) 

and if A is nonsingular 

det(A, e) = –e
T
A

–1
e∙detA = (A, e)/A)detA,                     (4) 

and if A is symmetric and nonsingular 

(A, e) ~ 








 
eAe0

0A
1T

               (5) 

where, by (4), determinants of both congruent matrices have the same value. 

Proof (2). The equality is obtained immediately if from the i-th row (i = 1, …, n) of the matrix (A + αE, e) we subtract 

the last row multiplied by α. 

Proof (3). The equality trivially holds for α  0. 

The derivative of det(A + αE) with respect to α gives  

  




d

)]  d[det( EA 
 = 




n

i

i

1  

)det( EA   = 


n

i

i

1  

det A = –det(A, e). 

Since then, we have 

                      det(A + αE) = – det (A, e) dα = – α∙det(A, e) + C. 

Putting α = 0, we get C = detA, which gives (3). 

Proof (4). The formula follows at once from Banachiewicz inversion formula and from Schur determinant formula (see 

[16] for more details). 

Proof (5). In fact, we have 

  








  11T
Ae

0I









0T
e

eA
 = 









 
eAe0

eA
1T

, 

and on the other hand 

  








 
eAe0

0A
1T 







 

1

1

0

eAI
 = 









 
eAe0

eA
1T

.            ■ 

If (A, e) is full rank then the rank of A is one or two less then the rank of (A, e). Converse is not true, but if A is 

symmetric and positive definite, then it follows from (4) that (A, e) is nonsingular. So it can be written: 

 (rank(A, e) = n + 1)  =>  (n – 1 ≤ rankA ≤ n), 

A 0  =>  det(A, e) ≠ 0. 

Moreover, in the last case, the nonsingular (A, e) has one negative eigenvalue and n positive ones ([4]):  
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A 0  =>  Inertia(A, e) = (n, 1, 0). 

More properties of saddle point matrices can be found in [10], [11]. 

Recall also that Gould Theorem [7] states that in quasi-Newton methods for the linear-equality constrained prob-

lem (1) it is desirable that the Hessian approximation A satisfy the “second order sufficiency” condition 

p
T
Ap > 0 for all nonzero p such that Ap = 0 

holds if and only if Inertia(A, e) = (n, 1, 0). 

Let C = [cij]R
(n–1), (n–1)

 stands for the matrix which entries are obtained from A as follows  

cik = –det(Cik, e), where Cik = 








nnnk

inik

aa

aa
; i, k = 1, …, n–1. 

 The matrix C allows to avoid the constraint. Since A is symmetric, therefore C is symmetric as well. Further-

more, the entries of C can be interpreted as second partial derivates of an unconstrained function Fn(x) of (n–1)-variables 

and given as follows 

Fn(x) = F(x1, ..., xn–1, 1 + xn – e
T
x). 

To construct C one can apply any function Fm(x) for fixed m = 1, …, n, and the choice of Fn(x) seems only the 

most convenient. Therefore in this case we have 

cik = 
2

1

ki

n

xx

F2




 (i, k = 1, …, n–1). 

Really, for any fixed k =1, …, n–1, we may write 

Fn(x) = 




1

1  

2x
n

i

iiia + ann(1–




1

1  

2)x
n

i

i + 2 





1

  
1,

xx
n

ji
ji

jiija + 2 









1

1  

1

1  

)x1(x
n

i

i

n

i

iina . 

Since by Leibniz rule is 

  

kx


[ 










1

1  

1

1  

)x1(x
n

i

i

n

i

iina ] = akn(1–




1

1  

x
n

i

i ) –




1

1  

x
n

i

iina , 

therefore we obtain the following equality 

k

n

x

F




 = 2[






1

1  

x)(
n

i

iinki aa + (akn – ann)(1–




1

1  

x
n

i

i )]. 

Derivating the expression above with respect to xh (h = 1, …, n–1), we have 

  

hk

n

xx

F2




= –2det(Ckh, e) = 2ckh. 

Applying the Lemma and remarks above we can give now necessary and sufficient condition for the existence and 

uniqueness of an interior KKT point and strict local optimizer for (1). 

Theorem. If (A, e) is non-singular then λ at an interior KKT point of (1) satisfies 

  λ∙det(A, e) + detA = 0,                      (6) 

and coefficients xi (i =1, 2, …, n) of this KKT point hold 

xi∙det(A, e) + detAi = 0,                                (7) 

where Ai denotes the matrix of A with the i-th row replaced by e. 

A necessary and sufficient condition for the existence and uniqueness of an interior KKT point for (1) is 

  det Ai ∙ det Aj > 0 for all i, j = 1, …, n.                 (8) 

A necessary and sufficient condition for the existence and uniqueness of an interior strict local solution to (1) is  
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det Ai ∙ det Aj > 0 for all i, j = 1, …, n, 

definiteness of C. 

If both conditions (9) are fulfilled then 

  C   0 for the local maximum, 

C   0 for the local minimum. 

Proof. Let x* be a stationary point of the given form F(x). By KKT conditions, the point x* is such that Ax* = λe.  

Since elements of x* sum to one, then λe = λEx*. 

Therefore the equality Ax* = λe can be rewritten as 

  (A – λE)x* = 0,  

and this implies that 

det(A – λE) = 0. 

So, by (2) and (3), putting α = –λ, this leads to equality (6). 

To prove (7), note that KKT conditions can be written as 

  (A, e) 








 λ

x
 = 









1

0
.             (10) 

This system of equations expresses stationarity and feasibility conditions for standard quadratic program (1). By (6) and 

under assumption of non-singularity of (A, e), it follows immediately that the system above has solution 

  xi = –
) ,det(

det

eA

A i  (i = 1, …, n). 

The sufficiency of (8): the assumption implies that det(A, e) ≠ 0 and that (7) defines x as strictly positive vector. 

The vector x and the scalar λ, defined by (7), satisfy (10). Thus, the double condition of a KKT point holds. It proves that 

x is both interior and the only KKT point with the value F(x) = λ. 

 It remains to prove the necessity of (8). If (1) has a unique KKT point with the value F(x) = λ, then x and λ sat-

isfy the double condition expressed by (10). Moreover, they constitute an isolated solution of (10), because replacing 

them with any other strictly positive vector x~  and scalar λ
~

 satisfying (10) would give a different KKT point, which by 

assumption does not exist. The existence of an isolated solution to (11) implies that det(A, e) ≠ 0. Since the vector x is 

strictly positive, the condition (8) now follows from (7). 

The condition (9) is obvious, because C states for Hessian of the unconstrained function Fn(x). As it is known, 

the composition of a convex quadratic form with an affine constraint is convex. Therefore eliminating equality constraint 

preserves convexity of the standard quadratic program.          ■  

Conclusions. 

 It follows from the Theorem that a quadratic form F(x) such that A and (A, e) are non-singular has at most one interior 

optimizer. 

If the KKT matrix (A, e) is singular then multiple interior optimizers may exist. However, multiplicity of interior KKT 

points is possible only if A is also singular. For instance, when A = 








aa

aa
, then (A, e) = 

















011

1

1

aa

aa

 (a ≠ 0),  

then detA = det(A, e) = 0, and F(x) = x
T
Ax = a for any x = [p, 1–p]

T
, where p<0, 1>. 

 If (A, e) is singular but A is non-singular, then (6) cannot possibly hold, and therefore an interior KKT point 

does not exist. 

Generally, a local optimal solution not always is a KKT point, but it must be if either the constraints are linear or 

the gradients of the binding constraints are linearly independent. Formulas (2) and (7) imply well known property, (see 

for instance [3]), that the optimizer remains the same if A is replaced with αA + βE. 

(9) 
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From the evolutionary game theory (EGT) point of view (see [9] for more details) the entry aij of the matrix A 

can be interpreted as the amount by which an individual increases its fitness when plays the i-th pure strategy in a contest 

against another individual that plays the j-th pure strategy. In this case, A is the resulting fitness matrix, termed also 

payoff matrix. A point pΔ is said to be a symmetric Nash equilibrium (NE) strategy if and only if 

p
T
Ap ≥ x

T
Ap for all xΔ. 

NE strategy p is said to be an evolutionarily stable strategy (ESS) if and only if 

  p
T
Ap = x

T
Ap  =>  p

T
Ax > x

T
Ax. 

Note that (4), (9) implies well known Owen’s formula [12] for the game value 

  v(A) = 
eAe

1T

1


 

Some of the characterization results of the standard quadratic program (1) which link quadratic forms, optimization 

theory and EGT, (see [2]), state that if A = A
T
 and AR

n, n
, xΔ,. then: 

  a1: x is an ESS  <=>  a2: x is a strict local solution to (1),   

  b1: x is a NE  <=>  b2: x is a KKT point for (1), 

  and ai  =>  bi (i = 1, 2). 

This result, by the Theorem given in the paper, for any evolutionary symmetric games can be reformulated and detailed 

as follows: 

1) Profile x is a completely mixed NE iff (8) holds.  

2) Profile x is a completely mixed ESS iff (9) holds. 

3) Payoff of the game with completely mixed NE is expressed by (6). 

4) Completely mixed NE and ESS profile are given by (7). 
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