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Abstract: Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function 

}1,1{)(: DVf  is called a signed dominating function (SDF) if 1])[(  vNf D  for each vertex vV. 

The weight w(f ) of f is defined by
Vv

vf )( . The signed domination number of a digraph D is s(D) = 

min{w(f )

 

: f is an SDF of D}. Let Cm×Cn denotes the Cartesian product of directed cycles of length m 

and n. In this paper, we determine the exact value of signed domination number of some classes of 

Cartesian product of directed cycles. In particular, we prove that: (a) s(C3×Cn) = n if n  0(mod 3), 

otherwise s(C3×Cn) = n + 2. (b) s(C4×Cn) = 2n. (c) s(C5×Cn) = 2n if n  0(mod 10), s(C5×Cn) = 2n + 1 

if n  3, 5, 7(mod 10), s(C5×Cn) = 2n + 2 if n  2, 4, 6, 8(mod 10), s(C5×Cn) = 2n + 3 if n  1,9(mod 10). 

(d) s(C6×Cn) = 2n if n  0(mod 3), otherwise s(C6×Cn) = 2n + 4. (e) s(C7×Cn) = 3n. 

Keywords: Directed graph, Directed cycle, Cartesian product, Signed dominating function, Signed 

domination number.  

 

1. Introduction 

        Throughout this paper, let D be a finite simple directed graph with the vertex set V(D) and the arc 

set A(D) (briefly V and A). If uv is an arc of D, then we also write uv, and we say that v is an out-

neighbor of u and u is an in-neighbor of v. For every vertex vV let )v(ND


and )v(ND


denote the set of 

out-neighbors and in-neighbors of v, respectively. We write |)v(N|)v(d DD

  and |)v(N|)v(d DD

  for 

the outdegree and indegree of v in D, respectively (shortly d
+
(v), d

-
(v)). A digraph D is r-regular if 

rvdvd DD   )()( for any vertex vD. Let }v{)v(N]v[N DD   and }v{)v(N]v[N DD  
. The 

minimum and maximum indegree and minimum and maximum outdegree of D are denoted by 
-
(D) = 

-
, 


-
(D) = 

-
, 

+
(D) = 

+
 and 

+
(D) = 

+
, respectively. For a real-valued function RDVf )(:  the weight 

of f is  


Vv
vffw )()( , and for S  V, we define  


Sv

vfSf )()( , so )()( Vffw  . Let k ≥1 be an 

integer and let D be a digraph such that 
-
(D) ≥ k -1. A signed k-dominating function (SkDF) of D is a 

function }1,1{: Vf  such that kvNf D  ])[( for every vertex vV (briefly f[v] ≥ k). The signed   

k-domination number of a digraph D is ks(D) = min{w(f ) : f is SkDF of D}. In particular, when k = 1, we 

get a definition of the signed dominating function and the signed domination number, i.e., s(D) = 1s(D). 

A signed dominating function of weight s(D) is defined a s(D)-function. Consult [7] for the notation and 

terminology which are not defined here. 

http://www.scitecresearch.com/journals
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        The Cartesian product D1D2 of two digraphs D1 and  D2 is the digraph with vertex set V(D1D2) = 

V(D1)V(D2) and ((u1,u2),(v1,v2))A(D1D2) if and only if either u1 = v1 and (u2, v2)A(D2) or u2 = v2 

and  (u1, v1)A(D1). 

The vertices of a directed cycle Cn are always denoted by the integers {1, 2,. . . , n}, considered 

modulo n. The ith row of V(CmCn) is Ri = {(i, j) : j =1, 2,…,n} and the jth column Kj = {(i, j) : i = 1, 2, 

…, m}. For any vertex (i, j) V(CmCn), always we have the indices i and j are reduced modulo m and n, 

respectively. If f is a signed dominating function for CmCn, then we denote 



m

i

j jifKf
1

),()(  of the 

weight of a column Kj and put sj = f(Kj). The sequence (s1, s2,…, sn) is called a signed dominating 

function sequence corresponding to f.  

 

        In the past few years, several types of domination problems in graphs have been studied  [2-4, 6, 

10], most of those belonging to the vertex domination. In 1995, Dunbar et al. [4], have introduced the 

concept of signed domination number of an undirected graph. Haas and Wexler in [5], established a sharp 

lower bound on the signed domination number of a general graph with a given minimum and maximum 

degree and also of some simple grid graph. Zelinka [11] initiated the study of the signed domination 

numbers of digraphs. He studied the signed domination number of digraphs for which the in-degrees does 

not exceed 1, as well as for acyclic tournaments and the circulant tournaments. Karami et al. [8] were 

established lower and upper bounds of the signed domination number of digraphs. Atapour et al. [1], 

presented some sharp lower bounds on the signed k-domination number of digraphs. Shaheen [9] 

calculated the signed domination numbers of Cartesian product of two paths PmPn for m = 2, 3, 4, 5, 6, 7 

and arbitrary n. In this paper, we study the Cartesian product CmCn of Cm and Cn for m, n ≥ 3. We 

mainly determine the exact values of s(C3×Cn), s(C4×Cn), s(C5×Cn), s(C6×Cn) and s(C7×Cn). 

        Let us introduce a definition. Suppose that f is a signed dominating function for CmCn, and assume 

that 1 j, h n. We say that the hth column in CmCn is an t-shift of the jth column if f(i, j) = f(i + t, h) for 

each vertex (i, j)Kj, where the indices i, t, i + t are taken modulo m and j, h are taken modulo n. 

Theorem 1.1(Zelinka [11]). Let D be a directed cycle or path with n vertices. Then s(D) = n. 

Lemma 1.2 (Zelinka [11]). Let D be a digraph with n vertices. Then s(D)  n (mod 2). 

Theorem 1.3 (Karami et al. [8]). Let D be a digraph of order n and let k be a nonnegative integer such 

that d
-
(v) ≥ k for each vV(D). Then  

                    













k1

2

k
2k1

n)D(S
 

Corollary 1.4 (Karami et al. [8]). Let D be a digraph of order n in which d
+
(v) = d

-
(v) = k for each vV, 

where k is a nonnegative integer. Then 
k1

n
)D(S


 . 

Theorem 1.5 (Atapour et al. [1]). Let k ≥ 1 be an integer, and let D be a digraph of order n with 
-
 ≥ k -1. 

Then  

                    
1

1
2

1k
2

n)D(kS









 







. 

2. Main results 

       In this section we calculate the signed domination number of the Cartesian product of two directed 

cycles Cm and Cn for m = 3, 4, 5, 6, 7 and arbitrary n. We should note that, for simplicity of drawing the 



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

ISSN: 2395-0218       

 
Volume 6, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm                                                   772 

Cartesian products of two directed cycles Cm×Cn, we do not draw the arcs from vertices in last column to 

vertices in first column and the arcs from vertices in last row to vertices in first row. 

Remark 2.1: Let f be a s(Cm×Cn)-function. Then f[(r, s)] ≥ 1 for each 1 ≤ r ≤ m and each 1 ≤ s ≤ n. Since 

Cm×Cn is 2-regular, it follows from f((i, j)) = -1 that f((i1, j)) = f((i, j1)) = 1 because f[(i, j)] ≥ 1,         

f((i +1, j -1)) = 1 because f[(i +1, j)] ≥ 1 and f((i -1, j +1)) = 1 because f[(i, j +1)] ≥ 1. On the other hand, 

if f((i1, j)) = f((i, j1)) = 1,  f((i +1, j -1)) = 1 and f((i -1, j +1)) = 1, then we must have f((i, j)) = -1 since 

f is a minimum signed dominating function. 

Remark 2.2. Since the case f((i, j)) = f((i +1, j)) = -1 is not possible, we get sj ≥ 0. Furthermore, sj is odd 

if m is odd and even when m is even. 

 

Theorem 2.1. 









.otherwise2n

),3(mod(0nifn
)CC( n3s  

Proof. Corollary 1.3, implies that s(C3×Cn) ≥ n.                                                                                       (1) 

In any case we cannot put more than -1 in each column. We distinguish two cases: 

Case 1. n  0(mod 3): We define a function  f ((i, j)) = -1 where i  j(mod 3) for j =1,…, n and f((i, j)) =1 

otherwise. This is a signed dominating function SDF for C3×Cn. Furthermore, 1)),((
3

1


i

j jifs  

which means that s(C3×Cn)≤ n. This together with (1) imply s(C3×Cn)= n. 

Case 2. n  1, 2(mod 3): The same function defined in the previous case with j  n, then sj = 1 for j = 1, 

2, …, n -1 and let f((i, n)) = 1 for i =1, 2, 3. Then f is SDF of C3×Cn with w(f ) = n +2. Without loss of 

generality, we can assume f((1,1)) = -1. By Remark 2.1, we have f((2, 1)) = f((3,1)) = f((1,2)) = f((3,2)) = 

1 and we can only put f((2, 2)) = -1. By similar arguments f((1,3)) = f((3,2)) = 1 and f((3,3)) = -1. We 

deduce that f((1, 1)) = f((2,2)) = f((3,3)) = f((1,4)) = f((2,5)) = f((3,6)) = … = f((1,3k +1)) = f((2, 3k +2)) = 

f((3, 3k + 3)) = … = -1. 

If n  1(mod 3), then Kn is 0-shift of K1 and this implies that f((1, n)) = -1 and f[(1,1)] = -1, this is a 

contradiction. So, we have f((1, n)) = 1. In the same time f((3,n -1)) = -1, then f((3,n)) = 1 and f((2,n)) = 1 

(otherwise f[(2, 1)] = -1), which implies that sn = 3. Hence, 

w(f ) 231
1

1






nnss n

n

j

j
. We conclude that 2n)CC( n3s  . 

If n  2 (mod 3), by similar arguments to the case n  1(mod 3), is the required (with notice that Kn is    

1-shift of K1).                                                                                                                                                □ 

Theorem 2.2. n2)CC( n4s  . 

Proof. We define a signed dominating function f as follows: 

f ((i, j)) = -1 where i  j(mod 4) for j = 1, …, n, and f ((i, j)) = 1 otherwise.  

fn-3((3, n -3)) = fn-2((4, n -2)) = fn-1((1, n -1)) = fn ((3, n)) = -1, and f ((i, j)) = 1 otherwise for j = n -3, n – 2, 

n – 1, n. Obviously,  

f is a SDF of C4×Cn for n  0, 3(mod 4). {f\{f(Kn)}{fn} is a SDF for C4×Cn when n  2(mod 4).  

{f\{f(Kn-3)f(Kn-2)f(Kn-1)f(Kn)}{fn-3fn-2fn-1fn} is a SDF for C4×Cn when n  1(mod 4). 

We have 2)),((
4

1


i

j jifs for j =1, …, n, and w(f ) = 2n. Therefore,  

                    s(C4×Cn) ≤ 2 n.                                                                                                                       (2) 
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Let f '  is a SDF of C4×Cn. By Remark 2.1, the case f ' ((i, j)) = f ' ((i +1, j)) = -1 is not exist. This implies 

that, for any column Kj there are two cases: 

Case 1. In Kj we have f ' ((i, j)) = f ' ((i+2, j)) = -1, and f ' ((i +1, j)) = f ' ((i +3, j)) =1. Then f ' ((i, j 1)) =1 

for i =1,2,3,4. Which leads, if s'j = 0 then s'j-1 = s'j+1= 4. So, s(C4×Cn) ≥ 2n. 

Case 2. In Kj we have f ' ((i, j)) = -1 and f ' ((i +1, j)) = f ' ((i +2, j)) = f ' ((i +3, j)) = 1. Then f ' ((i, j +1)) = 

f ' ((i -1, j+1)) =1. By Remark 2.1, only one of f ' ((i +1, j+1)) or f ' ((i +2, j+1)) is equals -1. We conclude 

that each column can not including more than one vertex which gets -1 and s'j ≥ 2 for j = 1, 2, …, n. 

Furthermore, w(f ') ns
n

j

j 2'
1




. Applying (2), together with the Cases 1 and 2, we get s(C4×Cn) = 2n. □ 

 

Theorem 2.3.  

                    























).10(mod9,1nif3n2

),10(mod8,6,4,2nif2n2

),10(mod7,5,3nif1n2

),10(mod0nifn2

)CC( n5s  

Proof. We define a signed dominating function f as follows: 

f ((4i -3, 2j -1)) = -1 for 1 ≤ j ≤ n/2 and i  j(mod 5),  

f ((4i -2, 2j)) = f (4i, 2j) = -1 for 1≤ j ≤ n/2 and i  j(mod 5), and 

f ((i, j)) = 1 otherwise.  

By define f, we have sj = 3 for j is odd and sj = 1 for j is even. Also, f is a SDF for C5×Cn when                  

n  0,3,5,7(mod 10). And f is a SDF of the vertices of K2, …, Kn, when n 1,2,4,6,8,9(mod 10).  

Now, let us a functions f1((4, n)) = -1 and f1((i, n)) = 1 for i = 1, 2, 3, 5.  f2((3, n)) = -1 and f2((i, n)) = 1 for 

i = 1, 2, 4, 5.  f3((5, n)) = -1 and f3((i, n)) =1 for i = 1, 2, 3, 4. And f4((i, n)) =1 for i = 1, 2, 3, 4, 5. We 

note: 

{f \ f(Kn)}f1 is a SDF of C5×Cn when n  2, 8(mod 10). 

{f \ f(Kn)}f2 is a SDF of C5×Cn when n  4(mod 10). 

{f \ f(Kn)}f3 is a SDF of C5×Cn when n  6(mod 10). 

{f \ f(Kn)}f4 is a SDF of C5×Cn when n  1, 9(mod 10). For an illustration s(C5×C11), see Figure 1. 

Also,  

          s(C5×Cn) ≤ 2 n, if n  0 (mod 10),  

          s(C5×Cn) ≤ 2 n + 1, if n  3, 5, 7(mod 10), 

           s(C5×Cn) ≤ 2 n + 2 for n  2, 4, 6, 8(mod 10),                                                                                (3) 

          s(C5×Cn) ≤ 2 n + 3 for n  1, 9(mod 10). 

 

By Remark 2.2, for any minimum signed dominating function f of C5×Cn with signed dominating 

function sequence (s1, …, sn), we have sj ≥ 1. Furthermore sj = 1, 3 or 5 for j = 1, …, n. Also, if sj = 1 then 

sj-1, sj+1 ≥ 3. This implies that w(f ) ns
n

j

j 2
1




 for n is even, and w(f ) 12
1




ns
n

j

j
 for n is odd. 

Thus with (3), gets  

s(C5×Cn) = 2n if n  0 (mod 10) and s(C5×Cn) = 2n + 1 if n  3, 5, 7(mod 10). 
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For n  1, 9(mod 10). 

We will show s(C5×Cn) ≥ 2 n + 3 when n  1, 9(mod 10). We consider the case n  1(mod 10), and the 

case n  9(mod 10) is similar to it. 

Let us 2n + 1 ≤ s(C5×Cn) ≤ 2n + 3. By Lemma 1.2, s(C5×Cn)  5n (mod 2), this implies that s(C5×Cn) = 

2n +1 or s(C5×Cn) = 2n + 3. 

We know that sj =1, 3 or 5 and sj = sj+1 =1 is not possible. If there is one column Kj with sj = 5, then      

w(f ) 32
1




ns
n

j

j
. By using (3) the case is finished. 

Assume that sj  5 for all j, then there are only two values of sj its 1 and 3. Suppose that s(C5×Cn) =      

2n +1. Then there are (n + 1)/2 terms of sj = 3 and (n - 1)/2 terms of sj = 1. Which implies that, there are  

sj = sj+1 = 3. Without loss of generality, we can assume that s1 = sn = 3. Then we gets the form sj = 3 

where  j is odd, and sj = 1 where j is even.  So, let us s1 = 3 and f((1, 1)) = -1, then s2 = 1 and f((2, 2)) = 

f((4, 2)) = -1. Also, s3 = 3 and f((5, 3)) = -1, s4 = 1 and f((1, 4)) = f((3, 4)) = -1. We deduce that each 

column Kj is 4-shift of Kj-2. Furthermore, Kn is 0-shift of K1 {4(n -1)/2 = 2n -2  0(mod 5)}, i.e. f((1, n)) 

= -1, and this is a contradiction. Therefore s(C5×Cn) > 2n +1 and s(C5×Cn) = 2n +3. 

  

 

                  

{Here, we must note that, for simplicity of drawing the Cartesian products of two directed cycles Cm×Cn, we do not 

draw the arcs from vertices in last column to vertices in first column and the arcs from vertices in last row to 

vertices in first row. Also for each figure of Cm×Cn, we replace it by a corresponding matrix by signs – and + which 

descriptions -1 and + 1 on figure of f(Cm×Cn), respectively}. 

For n  2, 4, 6, 8(mod 10). 

We will show s(C5×Cn) ≥ 2n +2 when n 2, 4, 6, 8(mod 10). We study the case n  8(mod 10), the 

remained cases are similar to it. 

Let n  8(mod 10). By Lemma 1.2, s(C5×Cn)  5n(mod 2), so s(C5×Cn) = 2n or s(C5×Cn) = 2n + 2. 

Assume that s(C5×Cn) = 2n. Then by the same argument similar to the case n  1(mod 10), we get sn = 1. 

Furthermore, Kn is (4(n – 2)/2 = 4(10k + 8 – 2)/2 = 4(5k + 3) = 2-shift of K2. This mining that f((1, n)) = 

f((4, n)) = -1, and this is a contradiction. Therefore s(C5×Cn) > 2n, and by (3) is s(C5×Cn) = 2n +2.        □ 

Figure 1. A signed dominating function of C5×C11. 

P7P12. 

K1        K2        K3        K4        K5        K6        K7        K8       K9        K10       K11 
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K1   K2  K3  K4  K5   K6  K7  K8  K9  K10 K11 

 

sj :  3    1     3    1    3     1     3    1    3   1     5  

 

R1 
 
R2 
 
R3 
 
R4 
 
R5 
 

 

A corresponding matrix of a signed 

dominating function of C5×C11 
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Theorem 2. 4. 

                    









).3(mod2,1nif4n2

),3(mod0nifn2
)CC( n6s  

 

Proof. We define a signed dominating function f as follows: 

 f ((i, j)) = -1 and f ((i + 3, j)) = -1 for 1≤ j ≤ n and i  j(mod 6), and f ((i, j)) = 1 otherwise.  

Also, f1((i, n)) = 1 for i = 1, …, 6. 

 

By define f, we have sj = 2 for all 1≤ j ≤ n. Notice that f is a SDF for C6×Cn where n  0(mod 3), and 

s(C6×Cn) ≤ 2n. Also, f is a SDF of the vertices of K2, …, Kn when n 1, 2(mod 3). So, {f \ f(Kn)}f1 is a 

SDF for C6×Cn where n  1, 2(mod 3), and s(C6×Cn) ≤ 2n + 4. For an illustration s(C6×C8), see Figure 2. 

By Remark 2.2, we have sj = 0, 2, 4 or 6. If sj = 0, then sj-1 = sj+1 = 6. Also, when sj = 2 is sj-1, sj+1 ≥ 2. We 

deduce that n2s)CC(
n

1j

jn6s  


. Hence, s(C6×Cn) = 2n for n  0(mod 3). 

           

For n  1, 2(mod 3). We will show that s(C6×Cn) ≥ 2 n + 4.  

If sj = 0 for some j, then 12s
1j

1j

j 




. Since j2s
j

j   for j ≥ 2, then 4n2)CC( n6s  . Assume that      

sj ≥ 2 for all j. If there is one sj = 6 or two of sj are equal 4, then gets the required. Now, assume that sj = 2 

for all j accept once which is equal 4, i.e. 2n2s
n

1j

j 


. We prove the following claim: 

Claim 2.1. If sj = … = sj+k = 2 (for k ≥ 1), then we have one possible of f is: 

 f ((i, j)) = f ((i + 3, j)) = -1  f ((i +1, j +1)) = f ((i + 4, j +1)) = -1. Furthermore, each column Kj is        

1-shift of Kj-1. 

Proof of Claim 2.1. Since sj = … = sj+k = 2 (for k ≥ 1), we have each column include two vertices are 

assigned value -1. By Remark 2.2, we can assume that f((i, j)) = f((i + 2, j)) = -1, this implies that          

f((i -1, j +1)) = f((i, j +1)) = f((i +1, j +1)) = f((i +2, j +1)) = 1. Furthermore, at most one of the remaining 

vertices of Kj+1 is assigned value -1. Which conclude that sj+1 ≥ 4, and is a contradiction. The cases      

f((i, j)) = f((i +4, j)) = -1 and f((i, j)) = f((i +5, j)) = -1 are similar by symmetry to the cases f((i, j)) =      

f((i +2, j)) = -1 and f((i, j)) = f((i +1, j)) = -1, respectively. Thus, we left with one case which f ((i, j)) =     

f ((i +3, j)) = -1  f ((i +1, j +1)) = f ((i +4, j +1)) = -1. Also, Kj is 1-shift of Kj-1. The proof of Claim 2.1 

is complete. 

By Claim 2.1, and without loss of generality, we can assume s1 = … = sn-1 = 2 and sn = 4. Then Kn-1 is    

(n -2)-shift of K1. Let f((1, 1)) = f((4, 1)) = -1, we distinguish two cases: 







































 

 

K1     K2    K3    K4    K5     K6   K7    K8 

 

sj :  2      2      2      2       2       2     2      6 

 

R1 
 
R2 
 
R3 
 
R4 
 
R5 
 
R6 
 

 

Figure 2: A corresponding matrix of a 

signed dominating function of C6×C8. 
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If n  1(mod 3), then f ((3, n -1)) = f ((6, n -1)) = -1. This implies that f ((2, n)) = f ((3, n)) = f ((5, n)) =      

f ((6, n)) = 1. Since sn = 4, we must have one of f((1, n)), f((4, n)) is equal -1. This is a contradiction, 

because f ((1, 1)) = f ((4, 1)) = -1.  

If n  2(mod 3), then f ((1, n -1)) = f ((4, n -1)) = -1. By the same argument to above case, we get a 

contradiction, because f ((1, 1)) = f ((4, 1)) = -1. 

From previous arguments, we conclude n2)CC( n6s   + 2. By Lemma 1.2, s(C6×Cn)  6n(mod 2). 

So, s(C6×Cn) = 2n + 4 when n  1, 2(mod 3).                                                                                              □ 

Theorem 2. 5. s(C7×Cn) = 3n, where n ≥ 7. 

 

Proof. We define a signed dominating function f as follows: 

 f ((i, j)) = f ((i +3, j)) = -1 for 1≤ j ≤ n and i  j(mod 7), and f ((i, j)) =1 otherwise. Also, we define 

fn-4((4, n -4)) = fn-4((7, n -4)) = -1, fn-3((2, n -3)) = fn-3((5, n -3)) = -1, fn-2((3, n -2)) = fn-2((7, n -2))  = -1,    

fn-1((1, n -1)) = fn-1((5, n -1)) = -1, fn((3, n)) = fn((6, n)) = -1 and fj((i, j)) = 1 otherwise for j = n -4, n -3,     

n -2, n -1, n. 

By define f and fn-4, fn-3, fn-2, fn-1 and fn we have sj = 3 for all 1 ≤ j ≤ n. Notice that: 

 f is a SDF for C7×Cn when n  0, 3(mod 7).  

{f\{f(Kn-3)f(Kn-2)f(Kn-1)f(Kn)}{fn-3fn-2fn-1fn} is a SDF for C7×Cn when n  1 (mod 7). For an 

illustration s(C7×C8), see Figure 3. 

{f\{f(Kn-1)f(Kn)}{fn-1fn} is a SDF for C7×Cn when n  2(mod 7). 

{f\{f(Kn-4)f(Kn-3)f(Kn-2)f(Kn-1)f(Kn)}{fn-4fn-3fn-2fn-1fn} is a SDF for C7×Cn when                    

n  4(mod 7). 

{f\{f(Kn-2)f(Kn-1)f(Kn)}{fn-2fn-1fn} is a SDF for C7×Cn when n  5(mod 7). 

{f\{f(Kn)}{fn} is a SDF for C7×Cn when n  6(mod 7). 

In all the cases we have s(C7×Cn) ≤ 3n. 

By Remark 2.2, we have sj = 1, 3, 5 or 7. Also, if sj = 1, then sj-1, sj+1 ≥ 5 and when sj = 3, is sj-1, sj+1 ≥ 3. 

This implies that n3s)CC(
n

1j

jn7s  


. So, we get s(C7×Cn) = 3n.                                                    □ 

              

3. Conclusions 

       In this paper, we determined the exact value of the signed domination number of Cm×Cn for m = 3, 

…, 7 and arbitrary n. By using same technique methods, our hope eventually lead to determination 

s(Cm×Cn) for m ≥ 8.   
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
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Figure 3: A corresponding matrix of a 

signed dominating function of C7×C8. 

K1     K2     K3     K4     K5      K6    K7     K8 
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sj :  3       3       3        3       3        3      3        3      
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        Based on the above (Remark 2.1 and Theorems 2.1, …, 2.5), also by the technique which used in 

this paper, we arrive to the following conjecture: 

Conjecture 3. 1. 

                    ).3(mod1nor)m2(mod0n),3(mod0n,mwhenn
3

m
)CC( nms 








  
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