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Abstract
The aim of this paper is to study separation axioms and compactness of la- open set in ideal topological
spaces, which was introduced by M.E. Abd El-Monsef, etc [1].
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1. Introduction

The subject of ideals in topological spaces has been studied by Kuratowski [3] and Vaidyanathaswamy [7]. An
ideal I on a set X is a nonempty collection of subsets of X which satisfies: (1) A €I and B C A

impliess B Eland(2) A €I, B € AimpliesdU B €1,

Given a topological space (X, T) with ideal I on X and if P(X) is the set of all subsets of X. A set
operator [ )*: P(X) — P(X), called a local function [3] of A with respect to T and I, is defined as follows:
forAcX A'(LLt)={xeXAnUgIlforeveryUEt(x)}, wheret(x)={Uet:xe U}
Kuratowski closure operator cl*( ) for the topology T(L 1), called the * -topology and finer than T, is
defined by cl*(A) = A U A*(I, ) [6]. When there is no chance for confusion we will simply write A% for
A*(I1,7) and T* for T*(I, 7). 1f I isanideal on X then (X, T,1) is called an ideal topological space.

In an ideal topological space (X, T,I), if A © X then int* (A) will denote the interior of A in (X, T*). The
closed subsets of X in (X, T*) are called *- closed sets. A subset 4 of an ideal topological space (X,t,1)is
#- closed if and only if A* = A4 [2].

For any ideal topological space (X, T, I'), the collection {¥ — J: V € T and J € I}is a basis for T*[2]. The
elements of T"are called *- open sets. A subset A of an ideal topological space (X,7,1) is said to be *- dense
setif cl*(A) = X . Itis clear that, in an ideal topological space (X, T,I},if A € B € X then A* € B and
so cl*(A) < cl*(B).
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Recall that, if (X, 7,I) is an ideal topological space and A is a subset of X then (4, T4, I,), where T, is the
relative topology on Aand I, = {4 N J:J €I}, isan ideal topological subspace.

Given a topological space (X,T). A subset A of a space X is said to be - open set
if A C int (ci [L‘ﬂt [A])) The family of all @- open subsets of a space (X, T) forms a topology on X |,

called the a@- topology on X and denoted by T,.. It is finer than T. If every nowhere dense set in a
space (X, 7) is closed then T, = T [5].

The concept of a set operator { )**: P(X) — P(X) was introduced by A. A. Nasef [4] in 1992 which is
called an - local function of I with respect to T. It was defined as follows:
for ACX A (L,t)={x € X:AnUE&I forevervyUE 7_(x)}

where T, (x) = {U € 1_:x € U}. When there is no chance for confusion we will simply write A%* for
A%*(I,T). An &" - closure operator, denoted by cl**( ), for a topology T** (I, T) which is called the *-e -
topology, finer than T. It is defined as follows: cl**(A)(I,T) = A U A®*(1,T). When there is no
ambiguity we will simply write cl®*(4) for cl®*(A)(I1,7). A basis B(I,T) for T** is described as
follows: B(I, ) ={V —J: VE1_ and] € I}. We will denote by int**(A) and cl**(A4) the interior
and closure of A © (X, T,1) with respect to T**. The elements of T are called T **- open sets. Closed
subsets of X in (X, T} are called T®*- closed sets. A subset 4 of an ideal topological space (X,T,I) is
T% closed (respectively, T%*- dense) if and only if A%* © A (respectively, cl**(4) = X). In an ideal
topological space (X,7,I) if A B © X then A" © B%* and cl®(4) c cl**(B). So A** c A*
and cl® (A) c cl*(A4).

Given a topological space (X, T). A subset A of X is said to be I@- open set if 4 = int (cl“‘*[int (ﬂ]))

The family of all Ie- open subsets of a space (X,T) is denoted by IaQ(X) [1]. Consider the ideal
topological spaces (X, T, 1) and (¥, @, ]) and define a function f: (X,7,1) — (¥, a,]) such that f is Ia-
irresolute homeomorphism, i.e..., then if the ideal topological space (X, T, I) has any property P and the ideal
topological space (¥, &, J) has the same property P then P is called I - topological property. A property Pof
an ideal topological space X is said to be - hereditary property if and only if every Iex- subspace of X also
possesses property P.

In the following subjects we need to remember some concepts introduced by Radwan in 2015 [6]. An [a-
boundary set is defined as: Let (X, T, I) be an ideal topological space and A © X. x &€ X is said to be an Iet-
boundary point of A if for every I't- open neighborhood set for x satisfies that the intersection with 4 and
A is nonempty set. The set of all I&- boundary points of A is called &-boundary set of 4 and simply is
denoted by [ex- b(A). Let (X, 7,1) be an ideal topological space and A = X. Then ['a- closure set of 4 is
defined by the union of A and Ia-derived set of A and simply is denoted by Ia- cl(A4). Let
f:(X,7,1) = (¥,o,]) be a function. f is said to be Ia- irresolute function if the inverse image of every
Jee- open setin ¥ is Jex- open set in X. I'x- topological property is a new property which defined as Consider
the ideal topological spaces (X,T,I) and (¥, ,J) such that f: (X,7,I) — (Y,q,]) is Ia- irresolute
function. Then if X satisfies any property F so did ¥ then this property is called I'ct- topological property.

2. SEPARATION AXIMOS IN Ia- OPEN SETS

In this section, we will study some properties of different types of separation axioms on the level of
ideal topological spaces using la- open sets.
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Definition 2.1 Let (X, T, ) be an ideal topological space then it is called Ie- T space if for any two different

elements in X there exist an Iex- open set in X containing one element of them but does not contain the other
element.

Proposition 2.2 (X, T,I) is an Ia- T.- space if and only if Ia- cl(x) # Ia-cl(y) for any x, ¥ € X such that
X F V.

Remark 2.3 The I'ex- T,- property is not hereditary property.

Example 2.4 Consider the ideal topological space (X.1,1) such that
X={x, vz}t =P(X),I = {EI, {}r}} then IO (X) = P(X). It is clear that X is Ia-T,- space but if we
take w = {x} € X then (w, T, 1, ) is not Ia-T.- space for [aO(w) = {w, @}.

Corollary 2.5 The Itx- T,- property is Iet- hereditary property.
Remark 2.6 The continuous image of Ict- T,- space is not necessary to be Ja- T, as the following example shows.

Example 2.7 Consider the ideal topological spaces (X,7,I) and (X,7,J) such that
X={ab,cdlt= {X,Eﬁ,{a}, {a,b}},[ =P(X)and J=1{0 }.
Then [aO0(X) =tand JaO(X) = {}f, @,{al{a, bl {a,clia,d}{a b, clia, bd}{a,c, d}}

Define a  function f: (X, 7,I) — (Y,0, /) such  thatf(a) = f(b) = f(c) = f(d) = {a}.
Then £ (X)) = X € Ia0(X), f 1) = @ € Ia0(X)and

fYHal= FfYHa,bl=Ff YHa,cl=Ff YHa,c,d}=fFa,b,d} = X € Ia0(X). Thus f is Fet-
continuous function and it is clear that (X,T,J) is Ia-T,- space but (X,T,I) is not fet- T,- space for
c,d € X suchthat ¢ # d the only - open set contains ¢ is X but it is also contain d.

Remark 2.8 The I'a- T,- property is not necessary to be topological property, as the following example shows.
Example 2.9 Consider the ideal topological spaces (X,7,I) and (X,7,J) such that
X={ab,cdlt= {X,Eﬁ,{a}, {a,b}},[ =P(X)and J={0 }.

Then [aO(X) =tand JaO(X) = {X, @,{al{a, bl {a,clia,d}{a b, clia, bd}{a,c, d}}

Define a function f: (X, 7,1) — (X,1,J) such that f(x) = x, ¥x € X. Then (X, t,]) is Ia- T,- space
but (X, T, 1) is not because, if we take ¢, d € X such that ¢ = d the only fex- open set contains € is X but it is
also contain .

Corollary 2.10 The I- T.- property is {x- topological property.

Remark 2.11 Every T,- space is Itt- T,- space but the converse is not necessary to be true, as the following
example shows.

Example 2.12 Take the ideal topological space (X, T,I) such that X = {a, b,c,d} 7= {X, @, {a},{a, b}}
and 1 = {8, (b3}, Then 1a0(X) = (X, 0, {a}, {a, b, {a, c}, {a, b, },

fa,b,d}{a,c, d}}
From T we get that the space X is not T.- space but from Ia @ (X)) we get that the space is Ie- T.- space.

Definition 2.13 Let (X, 7, 1) be an ideal topological space. Then it is called Iex- T} - space if for any two different

elements in X there exist two Icx- open sets in X such that each Ict- open set of them containing only one element
of those elements.
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Proposition 2.14 (X, 7,I) is an Ia- T;- space if and only if for any element x in X we have that {x} are le-
closed sets in X.

Corollary 2.15 An ideal topological space (X, T, 1) is an Ia- T- space if and only if the following statements are
equivalent:

i. la-cl{x}=1{x} VxeX.

i. {x}=n{F:FelaC(X)AxEF} VxeX.

ii. Ja-bi{x}C {x} Vx€eEX.

iv. Ja-dfx}<c {x} , vxeX.

v. la-df{x}=0 ,VxeX,
Corollary 2.16 Iex- Ty - property is Ie-hereditary property.
Remark 2.17 Iax- T - property is not topological property, as the following example shows.
Corollary 2.18 I'et- T - property is fa- topological property.
Remark 2.19 Every T - space is [a- T4- space but the converse is not necessary to be true. As the following
example shows:

Example 2.20 Consider the ideal topological space (W, 1,1) where
T={u, EN:u,={nn+1, .} nEN}U{D}and I = {0}, then the family of all Ia- open subsets
of V' is {::1 Uu,:A SN andu, E1— {EI]-} U {@}. Itis clear that (M, T, I) is Ia- T - space which is not
T, - space since, if we fix x = 1 then for any element ¥ € V" there is no open set 17 containing 1 but not

contains ¥.

Remark 2.21 Every Iet- Ty - space is fex- T- space but the converse is not necessary to be true, as the following
example shows.

Example 2.22 The (X, T, 1) in Example 2.12 is Ia- T,- space but it is not Jex- T - space for @, b € X such that

a # b there is no two I@- open sets in X such that each Iez- open set of them containing only one element of
those elements.

Remark 2.23 I'at- T, - property is not hereditary property.

Definition 2.24 Let (X, T,I) be an ideal topological space. It is called fe- T5- space if for any two different

elements in X there exist two disjoint fet- open sets in X such that each Iet- open set of them containing only one
element of those elements.

Remark 2.25 I'a- T5- property is not hereditary property.

Corollary 2.26 Iex- T,- property is fex- hereditary property.

Remark 2.27 I'a- T5- property is not topological property.

Corollary 2.28 Ia- T5- property is Ie- topological property.

Remark 2.29 Every T- space is Iet- T5- space but the converse is not necessary to be true.

Remark 2.30 Every Ie- T5- space is Iex- Ty - space is - T - space but the converse is not necessary to be true.

Example 2.31 The (X, 7, ) in Example 2.12 is Ia- T.- space but it is not J&x- T;- space for @, b € X such that
a # b there is no two disjoint [e- open sets in X such that each Icr- open set of them containing only one
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element of those elements. the ideal topological space in Example 2.21 is I~ T - space but not I'- T5- space for
any two - open sets in V', the intersection of them is not empty set.

Definition 2.32 Let (X, T, I) be an ideal topological space. It is called Iet- regular space if for every element in X
and - closed set in X does not contain the previous element then there exist two disjoint Jex- open sets in X such

that one of them containing the element and the other set containing the Ia- closed set. It is denoted by Ia-R-
space.

Definition 2.33 Let (X, T,I) be an ideal topological space. It is called almost [e- regular space if for every
element in X and every closed set in X does not contain the previous element then there exist two disjoint Iex- open
sets in X' such that one of them containing the element and the other set containing the closed set. It is denoted by
almost- Iex-R-space.

Proposition 2.34 (X, T,1) is an I&- R- space if and only if for any element x in X and every Iet- open set U in X
such that x € IJ then there exists another Zet- open set V in X satisfying that x € V S Ta-cl(V) E U.

Proposition 2.35 (X, 7, 1) is an almost I&- B- space if and only if for any element x in X and every open set I in
X such that x € U then there exists another Ia- open set V' in X satisfying that x € V € Ja-cl(V) € U.

Remark 2.36 Both Iex- K- property and almost {c- K- property are not hereditary properties.

Corollary 2.37 I'at- R- property is Itx- hereditary property.

Remark 2.38 Ix- B - property and almost Je- R - property are not topological property.

Corollary 2.39 I'ai- R- property is I'ct- topological property.

Remark 2.40 Every R- space is almost fcx- R - space Iex- H- space but the converse is not necessary to be true.

Definition 2.41 Let (X, T, I) be an ideal topological space then it is called fe- T-space if X is [a- T;-space and
I~ R-space.

Definition 2.42 Let (X, T, be an ideal topological space then it is called almost fa- Ty-space if X is Ta- T -
space and almost Jex- K-space.

Proposition 2.43 If the ideal topological space (X, T, I') is Ia- Tg-space then (X, T, I') is Ia- T,-space.
Corollary 2.44 Both almost f¢t- T5- property and I'cx- T3- property are not hereditary property.

Proof Iex- R- property, almost Ict- R- property and Iex- T - property are not hereditary properties.
Corollary 2.54 I'ct- Ty - property is Iex- hereditary property.

Proof Both Ict- R- property and I'c- T - property are [ct- hereditary properties.

Corollary 2.46 Both almost f¢t- T3- property and I'ee- T5- property are not topological properties.

Proof Ie- R- property, almost Ict- R- property and Iex- T - property are not topological properties.
Corollary 2.47 I'ct- Ty- property is fax- topological property.

Proof Both Ix- K- property and Iet- T - property are Iix- topological properties.

Remark 2.48 Every T5- space is almost Ja- T5- space is [a- Ty- space but the converse is not necessary to be
true.
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Definition 2.49 Let (X,7,) be an ideal topological space then it is called e- normal space if for every two
disjoint Iex- closed sets in X there exist two disjoint Jex- open sets in X such that each Iex- open set contain only
one of the two disjoint Ix- closed sets in X. It is denoted by Iex-IV-space.

Definition 2.50 Let (X, T, I) be an ideal topological space then it is called almost Ia- normal space if for every
two disjoint closed sets in X there exist two disjoint {ex- open sets in X such that each It~ open set contain only
one of the two disjoint closed sets in X. It is denoted by almost Iet-N-space.

Proposition 2.51 (X, T, I) is an Ia- N- space if and only if for any I&- closed set F in X and every - open set
U in X containing F then there exists another Ia- open set V' in X satisfying that F S V S la-cl(V) € U.

Proposition 2.52 (X, T, 1) is almost fe- N- space if and only if for any closed set F in X and every open set U in
X containing F then there exists another Ic- open set V' in X satisfying that F E V € Ia-cl(V) € U,

Remark 2.53 Both Ix- V- property and almost fex- V- property are not hereditary properties.

Example 2.54 Consider the ideal topological space (X,1,1) such that
Xx={1234}v={x01{2}{1.2}{23} {123} and I =P(X). Then IaO(X) = . Itis clear that
(X,7,1)is Ia- N- space and almost a- N-space but if we take 4 = {1,2,3} S X then (4,14, ;) is neither
Ia-N- space nor almost Ia-N- space for 1, =Ia0(A4) ={4,0,{2},{1,2},{23}}, then
{1}, {3} € F, = IaC(A) suchthat {1} N {3} = @ and {1} € {1,2} e Ia0(4), {3} € {2,3} €1a0(4)
but {1,2} N {2,3} = @.

Corollary 2.55 I'et- N- property is I'x- hereditary property.

Remark 2.56 Both Izx- V- property and almost fex- N - property are not topological property.

Corollary 2.57 I'ai- N- property is Icx- topological property.

Remark 2.58 Every N- space is almost fct- V- space Tex- N- space but the converse is not necessary to be true.

Definition 2.59 Let (X, T, I') be an ideal topological space. It is called e- T,-space if X is Ie- T;-space and [e-
N -space.

Definition 2.60 Let (X, T, 1) be an ideal topological space. It is called almost Iet- T,-space if X is Ict- T;-space
and almost fex- IV -space.

Proposition 2.61 Every I'et- T.-space is fa- H-space.

Proposition 2.62 Every Ie- T5-space is - T5-space.

Remark 2.63 Both almost Iet- T5- property and fct- T property are not hereditary properties.
Proof Iex- N- property, almost Iex- N- property and Iex- T, - property are not hereditary properties.
Corollary 2.64 I'ct- T - property is Iex- hereditary property.

Remark 2.65 Both almost fex- T'5- property and fe- T's- property are not topological properties.
Proof Iet- N- property, almost Iet- N- property and fex- T - property are not topological properties.
Corollary 2.66 Ia- T,- property is Iex- topological property.

Remark 2.67 Every T - space is almost - T'- space is Jx- T~ space but the converse is not necessary to be
true.
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3. Ia- COMPACT SPACES
In this section we will study fat- compact spaces using the concept Iex- open sets.

Definition 3.1 A subset A of an ideal topological space (X,T,I) is said to be Iex- compact if for every cover
{urx: a €A} by Ia- open sets in X for A, there is a finite subfamily A, of A such that
A—Ufu,aeA}EI Aspace (X, 7,1)is Ia- compact if X is Ia- compact as a set.

Remark 3.2 I'a- compact property is not hereditary property.

Example 3.3 Consider the ideal topological space (X,1,1) such that
X= Nu{0,—-1},t=p(N)u {H € N: H®is finite, 0 E Hor— 1 € H}and I = {@}. Then
IaO(X) = t. The ideal topological space (X, T, ) is an I&- compact space and by taking 4 = N € X which
is not [Ia- compact space for: {{n} n e N} is ITa open cover for N but
N —u {1,2, ..., m} = infinite set & I.

Remark 3.4 Iax- compact property is neither topological property nor Iex- topological property.

Example 3.5 Consider the ideal topological spaces (X,7,I) and (¥,o,J) such that
X=Y=Nt=0=D,]=Dand J= O ThenIz0(X) = Iz0(Y) = D.

Define a function f: (X, 7,1) — (¥,a,J) such that f(a) = a ¥a € X thus f is continuous, 1-1, onto
function and f_l is also continuous. [X,T, I] is - compact space but [1’, cr,f] is not. We can see that f is also
I'ax- irresolute function and f_l is jex- irresolute function. Hence fex- compact property is neither topological nor
I'x- topological property.

Corollary 3.6 If 4, B = X such that A, B are Ia- compact sets over X then A U B is also I'zx- compact set.

Remark 3.7 If 4,5 € X such that 4, F are Iax- compact sets over X then it is not necessary that A M B to be
I'x- compact set. As the following example shows.

Example 3.8 Consider the ideal topological space (X,1,1) such that
X= Nu {0,—-1}, 7= p(N)U {H © N: H®is finite, 0 E Hor— 1 € H} and I = {0}
Then IaO(X) = T. The ideal topological space (X,7,I) is an I@- compact space and by taking
A= NU {0},B= NU {— 1} so 4, B are Ia- compact sets over X but 4 N B = N which is not lea-
compact set.
Remark 3.9 There is no relation between being the ideal topological space (X,1,1) compact space or fet-
compact space.
Example 3.10
i. Consider the ideal topological space (X,T,I) such that X = N, = Dand I = p(N).
Then Ia&O@(X) = D. We know that N is not compact space but the ideal topological space (N,D,I) is le-

compact space.
ii.  Consider the ideal topological space (X,T,I) such that X = N,7 = {N, @,{1}} and I = {0},

Then IaO(X) = {4 © N:1 € A} U {0} We know that N is compact space but the ideal topological space
(N, 7,1} is not Ia- compact space. Now, take {{1, np:nE N} is an fct- open cover for N, then there exists
m € N such that U {1, m} is finite subfamily of {1,7} but N —U {1, m} & I, and it is infinite. Hence
(N, T, 1) is not Iet- compact space but (N, T) is compact.
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