Subdirect Sum of Ternary Rings and Subdirectly Irreducible Ternary Rings

Md.Salim ${ }^{1,1}$, Miss. P. Mondal ${ }^{2,2}$ and T.K.Dutta ${ }^{3,3}$
${ }^{1,2,3}$ Department of Pure Mathematics, University of Calcutta,
35, Ballygunge Circular Road,Kolkata-700019,India

Abstract

. In this paper we introduce the notions of subdirect sum of a family of ternary rings and the representation of a ternary ring as a subdirect sum of a family of ternary rings. We also introduce the notion of subdirectly irreducible ternary ring and characterize it. Lastly we characterize subdirectly irreducible Boolean ternary rings.

Keywords and phrases: Ternary rings; Ternary fields; Subdirectly irreducible ternary rings; Boolean ternary rings.
AMS Mathematics Subject Classification (2010): 16Y 30, 16 Y 60.

1 Introduction

The introduction of mathematical literature of ternary algebraic system dated back to 1924.The notion of ternary algebraic system was first introduced by H.Pr \ddot{u} fer [5] by the name 'schar'. After that W.D ö rnte[2] further studied this type of algebraic system. In 1932, D.H. Lehmer[6] investigated certain ternary algebraic systems called triplexes which turn out to be a commutative ternary groups. Ternary groups are the special case of polyadic groups(in other terminologies which are known as n-groups) introduced by E. L. Post [4]. In 1971, W. G. Lister [7] introduced the notion of ternary ring and study some important properties of it. According to Lister [7], a ternary ring is an algebraic system consisting of a nonempty set R together with a binary operation, called addition and a ternary multiplication, which forms a commutative group relative to addition, a ternary semigroup relative to multiplication and left, right, lateral distributive laws hold.

The notion of subdirect sum of a family of rings has been introduced by N.H. McCoy [3]. He also introduced and characterized representation of a ternary ring as a subdirect sum of a family of rings. Following Brikhoff [1], he introduced the notion of subdirectly irreducible ring and characterize it. In this paper we introduce the notions of subdirect sum of a family of ternary rings and a representation of a ternary ring as a subdirect sum of family of ternary rings. We obtain that "A ternary ring R has a representation as a subdirect sum of a family of ternary rings $\left\{R_{i}: i \in I\right\}$ if and only if for each $i \in I$, there exists homomorphism $\phi_{i}: R \xrightarrow[\text { onto }]{\longrightarrow} R_{i}$ such that if $r(\neq 0) \in R$, then $\phi_{i}(r) \neq 0$, for all least one i ". and "A ternary ring R has a representation as a subdirect sum of a family of ternary rings

[^0]$\left\{R_{i}: i \in I\right\}$ if and only if for each $i \in I$, there exists in R a two sided ideal K_{i} such that R / K_{i} is isomorphic to R_{i} and moreover $\cap K_{i}=\{0\}^{\prime \prime}$. We also introduce subdirectly irreducible ternary rings. We prove that "Every ternary ring R is isomorphic to subdirect sum of subdirectly irreducible ternary rings which are homomorphic images of $R^{\prime \prime}$. Lastly we characterize subdirectly irreducible Boolean ternary rings.

Some earlier work of the authors on ternary ring and multiplicative ternary hyperring may be found in [8] and [9].

2 Preliminaries

Definition 2.1 A nonempty set R together with a binary operation, called addition and a ternary multiplication denoted by juxtaposition, is said to be a ternary ring if R is an additive commutative group satisfying the following properties:
(i) $(a b c) d e=a(b c d) e=a b(c d e)$,
(ii) $(a+b) c d=a c d+b c d$,
(iii) $a(b+c) d=a b d+a c d$,
(iv) $a b(c+d)=a b c+a b d$ for all $a, b, c, d, e \in R$.

Definition 2.2 A nonempty subset S of a ternary ring R is called a ternary subring of R if $(S,+)$ is a subgroup of $(R,+)$ and if $s_{1} s_{2} s_{3} \in S$ for all $s_{1}, s_{2}, s_{3} \in S$.

Definition 2.3 A ternary ring R admits an identity provided that there exist elements
$\left\{\left(e_{i}, f_{i}\right) \in R \times R(i=1,2, \ldots, n)\right\}$ such that $\sum_{i=1}^{n} e_{i} f_{i} x=\sum_{i=1}^{n} e_{i} x f_{i}=\sum_{i=1}^{n} x e_{i} f_{i}=x$ for all $x \in R$. In this case the ternary ring R is said to be a ternary ring with identity $\left\{\left(e_{i}, f_{i}\right): i \in 1,2, \ldots, n\right\}$. In particular, if there exists an element $e \in R$ such that eex $=$ exe $=$ xee $=x$ for all $x \in R$ then e is called a unital element of the ternary ring R.

It is obvious that $x y e=(e x e) y e=e x(e y e)=e x y \quad$ and $\quad x y e=x(e y e) e=x e(y e e)=x e y$ for all $x, y \in R$. Hence the following result follows.

Proposition 2.4 If e is a unital element of a ternary ring R then exy $=x e y=x y e$, for all $x, y \in R$.
We now define left(right, lateral) ideal of a ternary ring.
Definition 2.5 An additive subgroup I of a ternary ring R is called a left(right, lateral) ideal of R if $r_{1} r_{2} i \quad$ (respectively $\left.i r_{1} r_{2}, r_{1} i r_{2}\right) \in I$ for all $r_{1}, r_{2} \in R$ and $i \in I$. If I is a left, a right and a lateral ideal of R then I is called an ideal of R.

Definition 2.6 Let R and R^{\prime} be two ternary rings and f be a mapping which maps R into R^{\prime}.
Then the mapping $f: R \rightarrow R^{\prime}$ is called a homomorphism of R into R^{\prime} if the following conditions hold:

$$
\begin{gathered}
f(a+b)=f(a)+f(b) \\
f(a b c)=f(a) f(b) f(c)
\end{gathered}
$$

for all $a, b, c \in R$.
Definition 2.7 A ternary ring R is called commutative if $x_{1} x_{2} x_{3}=x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)}$, where σ is a permutation of $\{1,2,3\}$ for all $x_{1}, x_{2}, x_{3} \in R$.

Definition 2.8 A non-trivial ternary ring R with a unital element e is said to be a division ternary ring iffor every element $a(\neq 0) \in R$ there exists an element $b \in R$ such that abx=x and $x b a=x$ for all $x \in R$.

Definition 2.9 Let R be a commutative ternary ring with a unital element e. Then R is called a ternary field if for every element $a(\neq 0) \in R$ there exists an element $b \in R$ such that abx=x for all $x \in R$.

Proposition 2.10 A ternary field does not contain divisors of zero.

Definition 2.11 An element x of a ternary ring R is called idempotent if $x^{3}=x$.

Definition 2.12 A ternary ring R is called a simple ternary ring if $R^{3} \neq(0)$ and if it contains no nonzero proper ideal ie $\{0\}$ and R are only ideals of R.

Theorem 2.13 A commutative ternary ring R with a unital element e is a ternary field if and only if (0) and R are the only ideals of R.

Proof. Let R be a ternary field. Let $e(\neq 0)$ be a unital element of R. Let $I(\neq 0)$ be any ideal of R and $a(\neq 0) \in I$. Since R is a ternary field, there exists an element $b \in R$ such that $a b x=x$ for all $x \in R$. Now $a \in I \Rightarrow x=a b x \in I$ for all $x \in R$. So $I=R$. Hence R contains only two ideals (0) and R. Conversely let the condition hold. Let $a(\neq 0)$ be an element of R. Consider the ideal (a) of R. Since $(a) \neq(0)$, it follows that $(a)=R$. So $e \in(a)$. Since R is commutative, $(a)=a R R$; Then $e=\sum_{i=1}^{n} a r_{i} s_{i}$ for some $r_{i}, s_{i} \in R, i=1,2, \ldots$. Now $x=e e x=\left(\sum_{i=1}^{n} a r_{i} s_{i}\right) e x=a\left(\sum_{i=1}^{n} r_{i} s_{i} e\right) x=a b x$ where $b=\sum_{i=1}^{n} r_{i} s_{i} e$. Thus there exists an element $b \in R \quad$ such that $\quad a b x=x \quad \forall x \in R$. So R is a ternary field.

Corollary 2.14 Let $T_{3}=\{0, f,-f\}$ Then T_{3} is a ternary field in which $\begin{array}{r} \\ \\ \text { ' }\end{array}$ and ternary multiplication is defined by

a	b	c	$a b c$
f	f	f	f
$-f$	$-f$	$-f$	$-f$
f	f	$-f$	$-f$
f	$-f$	f	$-f$
$-f$	f	$-f$	f
$-f$	f	f	$-f$
$-f$	$-f$	f	f
f	$-f$	$-f$	f

and the product three elements with at least one zero is zero and f and $-f$ are unitals elements of T_{3}.

Definition 2.15 Let R be a ternary ring and I be an ideal of R. Define the sets $a+I=\{a+x: x \in I\}$ for each $a \in R$ and $R / I=\{a+I: a \in R\}$. Then R / I forms a ternary ring with addition and multiplication defined by

$$
\begin{gathered}
(a+I)+(b+I)=(a+b)+I \text { and } \\
(a+I)(b+I)(c+I)=a b c+I
\end{gathered}
$$

for all $a, b, c \in R$. This ternary ring R / I is called the quotient ternary ring of R by I.
Definition 2.16 Let R be a ternary ring such that $R \neq\{0\}$. A proper ideal I of R is called maximal if I is not contained in any other proper ideal of R.i.e for any ideal J of $R, I \subseteq J \subseteq R$ implies that either $I=J$ or $J=R$.

Theorem 2.17 Let R be a commutative ternary ring with a unital element e. Then an ideal M of R is maximal if and only if R / M is a ternary field.

Proof. Let R be a ternary ring with a unital element e. Let M be a maximal ideal of R. Since R is commutative with unital element $e, R / M$ is also commutative with unital element $e+M$. Let $a+M \in R / M$ be such that $a+M \neq 0+M$. Then $a \notin M$. Hence the ideal $M+a R R$ properly contains M. Since M is a maximal ideal, we have $M+a R R=R$. This implies that there exists $m \in M$ and $r_{i}, s_{i} \in R, i=1,2, \ldots$ such that $m+\sum_{i=1}^{n} a r_{i} s_{i}=e$. Then $e+M=\sum_{i=1}^{n}(a+M)\left(r_{i}+M\right)\left(s_{i}+M\right)$. Now $x+M=(e+M)(e+M)(x+M)=\left(\sum_{i=1}^{n}(a+M)\left(r_{i}+M\right)\left(s_{i}+M\right)\right)(e+M)(x+M)=(a+M)$ $\left(\sum_{i=1}^{n}\left(r_{i}+M\right)\left(s_{i}+M\right)(e+M)\right)(x+M)$. Thus there exists an elements $b+M \in R / M$ such that $(x+M)=(a+M)(b+M)(x+M)$ where $b+M=\sum_{i=1}^{n}\left(r_{i}+M\right)\left(s_{i}+M\right)(e+M)$. So R / M is ternary field. Conversely, suppose that R / M is a ternary field. Since R / M is a ternary field, $R \neq M$. Let I be an ideal of R such that $M \subset I \subseteq R$. Then there exists $a \in I$ such that $a \notin M$. Then $a+M \neq 0+M$. Since R / M is a ternary field, there exists an elements $b+M \in R / M$ and such that
$(a+M)(b+M)(x+M)=x+M$ for all $x+M \in R / M$. So in particular $(a+M)(b+M)(e+M)=e+M$ which implies $e-a b e \in M$. This implies $e \in I$. Hence $I=R$. Therefore M is maximal.

3 Subdirect Sum of Ternary Rings and Subdirectly Irreducible Ternary Rings

Definition 3.1 Let $\left\{R_{i}: i \in I\right\}$ be a family of ternary rings indexed by the set I. Let $R=\left\{f: I \rightarrow \cup R_{i}\right.$ such that $\left.f(i) \in R_{i}, \forall i \in I\right\}$. We define addition and multiplication on R by

$$
\begin{aligned}
& (f+g)(i)=f(i)+g(i) \text { and } \\
& (f g h)(i)=f(i) g(i) h(i) .
\end{aligned}
$$

for all $i \in I$. Then R forms a ternary ring. This ternary ring R is called the complete direct sum of the family of ternary rings $\left\{R_{i}: i \in I\right\}$. Let $R^{\prime}=\left\{f: I \rightarrow \cup R_{i}\right.$ such that $f(i)=0$ for all most all $i\}$. Then R^{\prime} is a ternary subring of R. This subring is called the discrete direct sum of the family of ternary rings $\left\{R_{i}: i \in I\right\}$.

Remark 3.2 For a finite set of ternary rings the notions of complete direct sum and that of discrete direct sum coincide.

Definition 3.3 Let $\left\{R_{i}: i \in I\right\}$ be a family of ternary rings indexed by the set I and R be their direct sum. For each $i \in I$, we define a mapping θ_{i} from R into R_{i} by $\theta_{i}(f)=f(i)$. This mapping θ_{i} is called projection on R.
Proposition 3.4 For each $i \in I, \quad \theta_{i}: R \rightarrow R_{i}$ is an epimorphism of ternary rings.
Proof. Let $f, g \in R$. Now $\theta_{i}(f+g)=(f+g)(i)=f(i)+g(i)=\theta_{i}(f)+\theta_{i}(g)$ and $\theta_{i}(f g h)=(f g h)(i)$ $=f(i) g(i) h(i)=\theta_{i}(f) \theta_{i}(g) \theta_{i}(h)$. Thus θ_{i} is a ternary ring morphism. Let $t \in R_{i}$. We now define a mapping $f: I \rightarrow \cup R_{i}$ by

$$
f(j)=\left\{\begin{array}{lll}
t & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right.
$$

Then, $\theta_{i}(f)=t$. So θ_{i} is surjective. Thus θ_{i} is a ternary ring epimorphism.
Definition 3.5 Let $\left\{R_{i}: i \in I\right\}$ be a family of ternary rings and R be their complete direct sum. A ternary subring R^{\prime} of R is called a subdirect sum of $\left\{R_{i}: i \in I\right\}$ if $\theta_{i}\left(R^{\prime}\right)=R_{i}, \forall i \in I$, where $\theta_{i}: R \rightarrow R_{i}$ is the projection map.

Remark 3.6 For a given family of ternary rings $\left\{R_{i}: i \in I\right\}$, there may be many subdirect sums for the family of ternary rings $\left\{R_{i}: i \in I\right\}$.

For example, the complete direct sum and the discrete direct sum are subdirect sum of ternary rings $\left\{R_{i}: i \in I\right\}$.

Definition 3.7 If a ternary ring R isomorphic to a subdirect sum T of a family of ternary rings $\left\{R_{i}: i \in I\right\}$, then T is called a representation of R as a subdirect sum of the family of ternary rings $\left\{R_{i}: i \in I\right\}$.

In this case if α is the isomorphism of R onto T and θ_{i} is the projection map then $\phi_{i}=\theta_{i} \circ \alpha$ is a homomorphism from R onto R_{i}. This homomorphism ϕ_{i} is called the natural homomorphism of R onto R_{i}.

Theorem 3.8 A ternary ring R has a representation as a subdirect sum of a family of ternary rings
$\left\{R_{i}: i \in I\right\}$ if and only if for each $i \in I$, there exists homomorphism $\phi_{i}: R \longrightarrow$ onto R_{i} such that if $r(\neq 0) \in R$, then $\phi_{i}(r) \neq 0$, for at least one i.

Proof. Suppose that R has a representation T as a subdirect sum of the family of ternary rings $\left\{R_{i}: i \in I\right\}$. Then there exists an isomorphism α from R onto T. Let θ_{i} be the projection map. Let $\phi_{i}=\theta_{i} \circ \alpha$. Then ϕ_{i} is a homomorphism from R onto R_{i} for each $i \in I$. Let $r(\neq 0) \in R$. Then $\alpha(r) \neq 0$ [as α is an isomorphism]. Since $\alpha(r) \in T$, there exists at least one $i \in I$ such that $\alpha(r)(i) \neq 0$. i.e $\theta_{i}(\alpha(r)) \neq 0$ i.e $\left(\theta_{i} \circ \alpha\right)(r) \neq 0$ i.e $\phi_{i}(r) \neq 0$ for at least one i. Conversely assume the condition stated in the theorem. For each $r \in R$, we define a mapping $f_{r}: I \rightarrow \cup_{i \in I} R_{i}$ by $f_{r}(i)=\phi_{i}(r)$. Then $f_{r} \in S$, the complete direct sum of $\left\{R_{i}: i \in I\right\}$. Let $T=\left\{f_{r}: r \in R\right\}$. Let $f_{r_{1}}, f_{r_{2}} \in T$, where $r_{1}, r_{2} \in R$. Now $\left(f_{r_{1}}+f_{r_{2}}\right)(i)=f_{r_{1}}(i)+f_{r_{2}}(i)=\phi_{i}\left(r_{1}\right)+\phi_{i}\left(r_{2}\right)=\phi_{i}\left(r_{1}+r_{2}\right)$ [as $\quad \phi_{i} \quad$ is a homomorphism $]$ $=f_{r_{1}+r_{2}}(i)$ for all $i \in I$. Thus $f_{r_{1}}+f_{r_{2}}=f_{r_{1}+r_{2}} \in T$.
Let $\quad r_{1}, r_{2}, r_{3} \in R \quad . \quad\left(f_{r_{1}} f_{r_{2}} f_{r_{3}}\right)(i)=f_{r_{1}}(i) f_{r_{2}}(i) f_{r_{3}}(i)=\phi_{i}\left(r_{1}\right) \phi_{i}\left(r_{2}\right) \phi_{i}\left(r_{3}\right)=\phi_{i}\left(r_{1} r_{2} r_{3}\right) \quad$ [as $\quad \phi \quad$ is \quad a homomorphism] $=f_{r_{1} 2^{r} 2_{3}^{\prime}}(i) \quad, \quad \forall i \in I \quad$. Therefore $\quad f_{r_{1}} f_{r_{2}} f_{r_{3}^{\prime}}=f_{r_{1} r^{\prime} r_{3}^{\prime}} \in T$. Again $\left(-f_{r_{1}}\right)(i)=-f_{r_{1}}(i)=-\phi_{i}\left(r_{1}\right)=\phi_{i}\left(-r_{1}\right)$ [as $\quad \phi \quad$ is a homomorphism $]=f_{-r_{1}}(i), \forall i \in I$. Therefore $-f_{r_{1}}=f_{-r_{1}} \in T$. Thus T is a ternary subring of S. Let $f_{r} \in T$. Now $\theta_{i}\left(f_{r}\right)=f_{r}(i)=\phi_{i}(r) \in R_{i}$ for $f_{r} \in T$. So, $\theta_{i}(T) \subseteq R_{i}$. Let $r_{i} \in R_{i}$. Since ϕ_{i} is onto, there exists $r \in R$ such that $\phi_{i}(r)=r_{i}$. i.e $f_{r}(i)=r_{i}$ i.e $\theta_{i}\left(f_{r}\right)=r_{i}$. Thus $r_{i}=\theta_{i}\left(f_{r}\right) \in \theta_{i}(T)$. So $R_{i} \subseteq \theta_{i}(T)$. Therefore $R_{i}=\theta_{i}(T)$. Thus T is the subdirect sum of the family of ternary subrings $\left\{R_{i}: i \in I\right\}$. We now define a mapping $\alpha: R \rightarrow T$ by $\alpha(r)=f_{r}$. Let $\quad r_{1}, r_{2}, r_{3} \in R$. Then $\alpha\left(r_{1}+r_{2}\right)=f_{r_{1}+r_{2}}=f_{r_{1}}+f_{r_{2}}=\alpha\left(r_{1}\right)+\alpha\left(r_{2}\right) \quad$ and $\alpha\left(r_{1} r_{2} r_{3}\right)=f_{r_{1} r_{2} r_{3}}=f_{r_{1}} f_{r_{2}} f_{r_{3}}=\alpha\left(r_{1}\right) \alpha\left(r_{2}\right) \alpha\left(r_{3}\right)$. Therefore α is a ternary ring morphism. Let $r \in$ Ker α. Therefore $\alpha(r)=0 \Rightarrow(\alpha(r))(i)=0, \forall i \in I \Rightarrow f_{r}(i)=0 \Rightarrow \phi_{i}(r)=0, \forall i \in I \Rightarrow r=0$ (by the given condition). Therefore α is injective. Obviously α is surjective. Hence α is an isomorphism. Thus R has a representation T as a subdirect sum of the family of ternary rings $\left\{R_{i}: i \in I\right\}$.

Remark 3.9 Since $\left(\theta_{i} \circ f\right)(r)=\theta_{i}(f(r))=\theta_{i}\left(f_{r}\right)=f_{r}(i)=\phi_{i}(r), \quad \forall r \in R, \quad \theta_{i} \circ f=\phi_{i}$. Thus the homomorphism ϕ_{i} in the above theorem is nothing but the natural homomorphism.

Theorem 3.10 A ternary ring R has a representation as a subdirect sum of a family of ternary rings $\left\{R_{i}: i \in I\right\}$ if and only if for each $i \in I$, there exists in R a two sided ideal K_{i} such that R / K_{i} is isomorphic to R_{i} and moreover $\cap K_{i}=(0)$.
Proof. Suppose that R has a representation as a subdirect sum of a family of ternary rings $\left\{R_{i}: i \in I\right\}$. Then for each $i \in I$ there exists a homomorphism $\phi_{i}: R \xrightarrow[\text { onto }]{\longrightarrow} R_{i}$ such that if $r(\neq 0) \in R$ then $\phi_{i}(r) \neq 0$, for at least one i. Let $K_{i}=\operatorname{Ker} \phi_{i}, \quad i \in I$. Then for each $i \in I, K_{i}$ is a two sided ideal of R. Again by the "First Isomorphism Theorem" on ternary ring $R / \operatorname{Ker} \phi_{i} \cong R_{i}$, $\forall i \in I$ i.e $R / K_{i} \cong R_{i}$, $\forall i \in I$. Let $r \in \cap K_{i} \Rightarrow r \in K_{i}=\operatorname{Ker}_{i}, \forall i \in I \Rightarrow \phi_{i}(r)=0, \forall i \in I \Rightarrow r=0$. Thus $\cap K_{i}=(0)$. Conversely suppose that for each $i \in I$, there exists a two sided ideal K_{i} in R such that $R / K_{i} \cong R_{i}$ and $\cap K_{i}=0$. Let $\pi_{i}: R \rightarrow R / K_{i}$ be natural epimorphism for each $i \in I$ and $\alpha_{i}: R / K_{i} \rightarrow R_{i}$ be the isomorphism, $\forall i \in I$. Let $\phi_{i}=\alpha_{i} \circ \pi_{i}$. Then for each $i \in I$ there exists a homomorphism ϕ_{i} from R onto R_{i}. Now suppose that $r(\neq 0) \in R$. Then $r \notin(0)=\bigcap_{i \in I} K_{i} \Rightarrow r \notin K_{i}=\operatorname{Ker} \pi_{i}$, for at least one i. $\Rightarrow \pi_{i}(r) \neq 0 \Rightarrow\left(\alpha_{i} \circ \pi_{i}\right)(r) \neq 0 \Rightarrow \phi_{i}(r) \neq 0$, for at least one i (since α_{i} is an isomorphism). Then R has a representation as a subdirect sum of a family of ternary rings $\left\{R_{i}: i \in I\right\}$.

Definition 3.11 A ternary ring R is said to subdirectly irreducible if for every representation T of R as a subdirect sum of a family of ternary rings $\left\{R_{i}: i \in I\right\}$, there exists an $i \in I$ such that the homomorphism ϕ_{i} from R onto R_{i} is an isomorphism where $\phi_{i}=\theta_{i} \circ \alpha, \theta_{i}$ is the projection map and α is the isomorphism from R onto T.

Trivial ternary rings i.e the ternary rings consisting of zero element only are assumed to be subdirectly irreducible.
Theorem 3.12 A nonzero ternary ring R is subdirectly irreducible if and only if the intersection of all nonzero ideals of R is a nonzero ideal.
Proof. Suppose that the nonzero ternary ring R is subdirectly irreducible. Let $\left\{K_{i}: i \in I\right\}$ be the family of all nonzero ideals of R. If possible, let $\bigcap_{i \in I} K_{i}=(0)$. Let $R_{i}=R / K_{i}$. Then $\left\{R_{i}: i \in I\right\}$ is a family of ternary rings. Now for each $i \in I$, there exists a homomorphism ϕ_{i} from R onto R_{i} (natural epimorphism). Now suppose that $r(\neq 0) \in R$. Then $r \notin(0)=\bigcap_{i \in I} K_{i} \Rightarrow r \notin K_{i} \Rightarrow \phi_{i}(r) \neq 0$ for at least one $i \in I$. So R has a representation T as subdirect sum of family of ternary rings $\left\{R_{i}: i \in I\right\}$. Since for any $i \in I, \quad \phi_{i}: R \rightarrow R_{i}$ is not an isomorphism, it follows that R is not subdirectly irreducible, a contradiction. So intersection of all nonzero ideals of R is a nonzero ideal. Conversely suppose that intersection of all nonzero ideals of R is a nonzero ideal. Let T be a representation of R as a subdirect sum of a family of ternary rings $\left\{R_{i}: i \in I\right\}$. Then for each $i \in I$ there exists an onto homomorphism $\phi_{i}: R \rightarrow R_{i}$ such that for $r(\neq 0) \in R, \phi_{i}(r) \neq 0$ for at least one i. Let K be the intersection of all nonzero ideals of R, then $K \neq(0)$. Let $r(\neq 0) \in K$. So there exists an onto homomorphism $\phi_{i}: R \rightarrow R_{i}$ such that $\phi_{i}(r) \neq 0$. So $r \notin \operatorname{Ker~} \phi_{i}$. But K is the smallest nonzero ideal of R. So, this is possible only when $\operatorname{Ker} \phi_{i}=(0)$, which implies that ϕ_{i} is a monomorphism. Also ϕ_{i} is an epimorphism. Thus ϕ_{i} is an isomorphism. Thus there exists an $i \in I$ such that ϕ_{i} from R onto R_{i} is an isomorphism. So R is subdirectly irreducible.

Corollary 3.13 (1) Every division ternary ring or ternary field is subdirectly irreducible.
Proof. Let R be a division ternary ring or a field. Then $\{0\}$ and R are only ideals. Here R is the only nonzero ideal. Hence the result.

Corollary 3.14 Every simple ternary ring is subdirectly irreducible.
Theorem 3.15 Every ternary ring R is isomorphic to a subdirect sum of subdirectly irreducible ternary rings which are homomorphic images of R.

Proof. Obviously we may restrict ourselves to the case in which R has nonzero elements. Let $a(\neq 0) \in R$. Let $\mathcal{F}=\{I: I$ is an ideal of R such that $a \notin I\}$. Since $(0) \in \mathcal{F}, \mathcal{F} \neq \phi$. Now applying Zorns lemma, we can find a maximal element M_{a} in \mathcal{F}. Then M_{a} is an ideal of R, maximal with respect to the properly that $a \notin M_{a}$. i.e if N is an ideal of R such that $M_{a \neq N}$ then $a \in N$. Let $R_{a}=R / M_{a}$. Then $\left\{R_{a}: a(\neq 0) \in R\right\}$ is a family of ternary rings. Let N / M_{a} be a nonzero ideal of R / M_{a} . Then $M_{a \neq} \mp$. This implies that $a \in N$. Now $a+M_{a} \neq 0+M_{a}$ and $a+M_{a} \in N / M_{a}$. This is true for all nonzero ideals N / M_{a} of R / M_{a}. Thus the intersection of all nonzero ideals of R / M_{a} is nonzero. Consequently $R_{a}=R / M_{a}$ is subdirectly irreducible. Now we consider the family of subdirectly irreducible ternary rings $\left\{R_{a}: a(\neq 0) \in R\right\}$ where $R_{a}=R / M_{a}$. Now for each $a \in R \backslash\{0\}$, there exists an ideal M_{a} in R such that $R / M_{a} \cong R_{a}$ [actually $\left.R / M_{a}=R_{a}\right]$. If possible let $b(\neq 0) \in \bigcap_{a \in R \backslash\{0\}} M_{a}$. Then $b \in M_{b}$, a contradiction. So $\bigcap_{a \in R \backslash(0)\}} M_{a}=(0)$. Consequently R has a representation T as subdirect sum of the family of subdirectly irreducible ternary rings $\left\{R_{a}: a \in R \backslash\{0\}\right\}$. Thus R is
isomorphic to the subdirect sum of the family of subdirectly irreducible ternary rings $\left\{R_{a}: a \in R \backslash\{0\}\right\}$, which are homomorphic images of R.
Theorem 3.16 A subdirectly irreducible commutative ternary ring with a unital element f and with more than one element and with no nonzero nilpotent elements is a ternary field.
Proof. Let R be a subdirectly irreducible commutative ternary ring with a unital element f and with more than one element and with no nonzero nilpotent element. Let e be an idempotent element of R. Consider the ideals $e R R$ and $A=\{r-e e r: r \in R\}$. Now let $x \in e R R \cap A$. Then $x=\sum_{i=1}^{n} e r_{i} s_{i}=r-e e r$, where $r_{i}, s_{i}, r \in R, i=1,2 \ldots . \ldots n$. Now eex $=x$ [as e is an idempotent element]. Again eex $=$ eer - eeeer $=$ eer - eer $=0$. So $e R R \cap A=(0)$. Since R is subdirectly irreducible either $e R R=(0)$ or $A=(0)$. If $e R R=(0)$, then $e=e e e \in e R R=(0)$; so $e=0$. If $A=(0)$ then $r=e e r$ for all $r \in R$. So e is a unital element of R. Let $z(\neq 0) \in$ intersection of all non-zero ideals of R. Consider the ideal $z^{2} R$. Then $z^{2} R \neq(0)$, for R contains no non-zero nilpotent elements. Now $z \in z^{2} R$. So $z=z^{2} t$ for some $t \in R$. Then $z t f=z^{2} t t f=z t z t f[$ as R is commutative] $=z t \cdot z^{2} t t f=z^{3} t^{3} f^{3}[$ as R is commutative $]=(z t f)^{3}$. So, $z t f$ is an idempotent of R. So $z t f=0$ or $z t f$ is a unital element of R. If $z t f=0$, then $z=z^{2} t f f=z(z t f) f=0$, which is a contradiction. So $z t f$ is a unital element of R. Let $I(\neq(0))$ be an ideal of R. Then $z \in I \Rightarrow z t f \in I \Rightarrow x=x(z t f)(z t f) \in I$, $\forall x \in R$. So $I=R$. Thus R is a commutative ternary ring with a unital element and (0) and R are the only ideals of R.So R is a ternary field.

4 Subdirectly Irreducible Boolean Ternary Rings

Definition 4.1 A ternary ring in which every element is idempotent is called a Boolean ternary ring.

Theorem 4.2 A commutative Boolean ternary ring R is subdirectly irreducible if and only if $R \cong T_{3}$.[defined in corollary 2.14]
Proof. Suppose that the commutative Boolean ternary ring R is subdirectly irreducible. Let $e \in R$. Now consider the ideals $e R R$ and $A=\{r-e r r: r \in R\}$ of R. Let $x \in e R R \cap A$. Then $x=\sum_{i=1}^{n} e r_{i} s_{i}=r$-eer, where $r_{i}, s_{i}, r \in R, i=1,2, . . n$. Now, eex $=x$ [as e is an idempotent element]. Again, eex $=e e r-$ eeeer $=e e r-e e r=0=x$. So $x=e e x=0$. Thus $e R R \cap A=(0)$. Since R is subdirectly irreducible $e R R=(0)$ or $A=(0)$. If $e R R=(0)$ then $e=e^{3} \in e R R=(0)$ i.e $e=0$. If $A=(0)$ then $r=e e r$ for all $r \in R$. So e is a unital element of R. Thus every non zero element of R is a unital element of R. Let $e(\neq 0), f(\neq 0) \in R$. Then $e+f \in R$. So $e+f=0$ or $e+f$ is a unital element of R. If $e+f=0$ then $e=-f$. Let $e+f \neq 0$. Then $e+f$ is a unital element of R. So $(e+f)(e+f) e=e$. This implies that $e^{3}+e f e+f e e+f f e=e$ i.e $e+f+f+e=e$ or $2 f=-e$. Similarly we get $2 e=-f$., Thus $2 e-e=2 f-f$ i.e $e=f$. Thus $R \cong T_{3}$. Conversely suppose that $R \cong T_{3}$. Since T_{3} is a ternary field, so T_{3} and hence R is subdirectly irreducible.

Theorem 4.3 A ternary ring R is isomorphic to a subdirect sum of ternary fields $\left\{R_{i}: i \in I\right\}$ where $R_{i} \cong T_{3} \quad \forall i \in I$ if and only if R is a commutative Boolean ternary ring.

Proof. Let R be a commutative Boolean ternary ring. Then R is isomorphic to a subdirect sum of subdirectly irreducible ternary ring $\left\{R_{i}: i \in I\right\}$ which are homomorphic images of R. Since R is commutative Boolean, each homomorphic image R_{i} of R is also commutative Boolean. Also, each R_{i} is subdirectly irreducible. So, each $R_{i} \cong T_{3}$. Then each R_{i} is a ternary field. Thus the commutative Boolean ternary ring R is isomorphic to a subdirect sum of ternary fields $\left\{R_{i}: i \in I\right\}$, where $R_{i} \cong T_{3}$,
$\forall i \in I$. Conversely suppose that R is isomorphic to subdirect sum, say T of ternary fields $\left\{R_{i}: i \in I\right\}$, where $R_{i} \cong T_{3}$, for each $i \in I$. Let $f \in T$ then $f(i) \in R_{i}$, for $i \in I$. Since $R_{i} \cong T_{3}$. $(f(i))^{3}=f(i)$ i.e $f(i) . f(i) . f(i)=f(i)$ i.e $f^{3}(i)=f(i)$, for all $i \in I$. So $f^{3}=f$. Thus each element of T is idempotent. Again $f(i) \in R_{i} \cong T_{3}$. Hence, each element of R is also idempotent(as $R T$). Again since each $R_{i} \cong T_{3}$, each R_{i} is commutative. So the complete direct sum and hence the subdirect sum T of ternary fields $\left\{R_{i}: i \in I\right\}$ is commutative. Thus R is commutative. So R is a commutative Boolean ternary ring.

References

[1] Brikhoff, G. Subdirect unions in universal algebra, Bulletin of American Mathematical society, vol. 50(1944), pp. 764-768.
[2] Dörnte, W. : Untersuchungen uber einen Verallgemeinerten Gruppenbegriff; Math. Z. 29 (1928), 1-19.
[3] McCoy, N. H. The theory of rings, Chelsea publishing company, New York,1964.
[4] Post, E. L.: Polyadic groups; Trans. Amer. Math. Soc. 48 (1940), 208-350.

[6] Lehmer, D. H.: A Ternary Analogue of Abelian Groups; Amer. J. Math., 54(2) (1932), 329-338.
[7] Lister, W. G.: Ternary Rings; Trans. Amer. Math. Soc. 154 (1971), 37-55.
[8] Salim, Md. and Dutta, T. K. - A Class of General Type of Regularities And Generalized Semiprime Ideals In Ternary Ring -- (Accepted for publication)-- The Southeast Asian Bullatin of Mathematics.
[9] Salim, Md. Chanda, T. and Dutta, T. K. - Regular equivalence and strongly regular equivalence on multiplicative ternary hyperring.- (Accepted for publication) -- Journal of Hyperstructure.

[^0]: ${ }^{1}$ smpmath746@yahoo.in
 ${ }^{2}$ pinkimondal1992@gmail.com
 ${ }^{3}$ duttatapankumar@yahoo.co.in

