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Abstract. 

 -complemented algebras are defined as those (not necessarily associative or unital) algebras such 

that each annihilator ideal is complemented by other annihilator ideal. Let  denote the set of all idempotents 

of the extended centroid of a semiprime algebra A . We prove that if there is a maximal ideal  of  such 

that  then A  and  are two  -complemented algebras. As a consequence, we give a 

characterization of the  -complementation of the unitisation, and the multiplication ideal, of a semiprime 

algebra. 
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1  Introduction 

     In this paper, we will deal with nonzero algebras over a field  of zero characteristic, which are not 

necessarily associative or unital. Throughout the paper we assume that A  is a semiprime algebra. As usual, for 

each ideal I  of an algebra A , the  annihilator of I  in A , denoted here by )(A InnA  (or simply )(A Inn  

when no confusion can arise), is defined as the largest ideal J  of A  such that 0== JIIJ . The  -closure 

of I  is defined by  

 : A (A ( )).I nn nn I  

Note that I  is an essential ideal if, and only if, AI = . The ideal I  is said to be  -closed whenever II = . 

It is easy to see that this closure coincides with the one given in [11] in the associative setting. We will put  

to denote the set of all  -closed ideals of A . Recall that A  is said to be  - complemented if for any 
-closed ideal I  of A  there exists a  -closed ideal J  of A  such that JIA = . It is clear that every 

-complemented algebra is  semiprime (that is, 02 I  whenever I  is a nonzero ideal of A ). A structure 

theory for  -complemented algebras has been recently developed in [5]. In [7] was obtained a characterization 

of the  -complementation of a semiprime algebra in terms of the set of all idempotents of its extended 

centroid. Different approaches to the concepts of extended centroid, AC , and central closure, ACQ AA = , for a 

semiprime algebra A  appear in the literature (see [1], [14], and [15]). It is worth pointing out that in [13] it is 

proved that there exists a bijection between the closed ideals in A  and the ideals which are direct summands in 

AQ  (see also [12]). For a recent treatment of these concepts we refer to reader to [8, Section 2].  
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The starting point of this path relies on the possibility of associating an idempotent of the extended centroid of 

the algebra to each subset of the algebra itself. This result is well-known in an associative context [2] and it was 

established in [7] in a general context as follows 

Proposition 1.1. [7, Proposition 1.6] and [2, Theorem 2.3.9.(iii)] Let A  be a semiprime algebra and let S  be 

a nonempty subset of AQ  or AC . Then   

 (1)  There exists a unique ][Se  in  such that  

 ;)(1=0}=;{ ][ ASA CeSC    

 (2)  Spev er yforppe S    =][  and for any  ][][ = SeS eee .  

The second point of this path relies in the mentioned characterization of the  -complementation. The 

set  of all idempotents of the extended centroid of a semiprime algebra A  has a partial order given by 

fe   iff efe = . In fact,  is a Boolean algebra for the operations  

 .1=        ,=    ,= * eeandeffefeeffe   

 

Theorem 1.2.  [7, Theorem 1.8]  Let A  be a semiprime algebra. Then the map AeAe   is a 

lattice isomorphism from  onto , and its inverse is the map ][IeI  . As a consequence, we have A  

is  -complemented if, and only if,  In this case,  

  

We prove that if  is an  ideal of  (that is, a subset such that  implies that 

 and, whenever  and ) then the subalgebra 

  of AQ  is a  -complemented algebra and  This result is well known 

for  (see [7]). As a first application we prove that A  is  -complemented iff there is a maximal 

ideal  of  such that  On the other hand, any algebra (either without or with a unit) can be 

embedded in another algebra which does possess a unit element 1 . The  unitisation of an algebra A  over 

 denoted by 
1A , is the algebra consisting of the vector space  with the product defined by  

 ).,(:=),)(,(  ababba   

It is well known (see [8]) that  

 ,1 edcomplementAedcomplementA    

and, if A  is unital then the converse is also true. Here we prove that in a general setting: 
1A  is 

-complemented if, and only if, there is a maximal ideal  of  such that  If moreover A  

has nonzero  -socle, then 
1A  is a  -complemented algebra if, and only if, there is  maximal such 

that 
1][0,1)( AA e  . 

Let )(AL  denote the algebra of all linear operators from A  into A . For Aa , aL  and aR  mean 

the operators of left and right, respectively, multiplication by a  on A . )(AM  denotes the  multiplication 

algebra of A , namely the subalgebra of )(AL  generated by the identity operator AId  and the set 

} : ,{ AaRL aa  . The  multiplication ideal of an algebra A , denoted by )(# AM , is the subalgebra of )(AL  
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generated by the set } : ,{ AaRL aa  . It is also well known (see [8, Theorem 4.9])) that in an associative 

context we have  

 .)(# edcomplementAMedcomplementA    (1) 

and  

 .)(1 edcomplementAMedcomplementA    (2) 

 In this paper is proved that these equivalences remain true in a general context whenever )( 1AM  is 

semiprime (this condition is automatic for a semiprime associative algebra). 

Throughout the paper frequently use is made of these properties of Proposition 1.1, often without 

explicit mention, and of the term " -theorem" to refer to Theorem 1.2. 

2  Ideals of  generating  -complemented algebras.  

A nonempty subset  of  is said to be an ideal if for any  we have 

 and,  

In that follows, we will denote, for any idempotent , by ][0,e  the ideal of  defined by  

  

Before to begin to study the properties of these ideals, let us obtain an elemental property  

Proposition 2.1.  For any subset  of AQ  or AC ,  

Proof. Suppose that  is a subset of AQ  or AC . Since  

  

we have  Hence, keeping in mind  -theorem, we obtain that 

 or equivalently        

From the above Proposition, it is clear that for any ideal  of  and  we have  

  

The non existence of proper ideals of  is determined by the primeness of the algebra. Recall that an algebra 

A  is said to be  prime if 0IJ  for all nonzero ideals JI ,  of A . 

Proposition 2.2.  

The following assertions are equivalent:  

     

 

Proof. In fact, combining [5, Propostion 3.3] and  -theorem, we deduce that A  is prime if, and only if, 

= {0,1}. On the other hand, it is clear that ][0,e  is a proper ideal of  if, and only if, there is  
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with 0,1e . 

Given an ideal  of , consider the subset  of AQ  defined by 

  

Note that  is contained in A , if, and only if  is an ideal of A . In general, for any ideal  of , 

 is an ideal of 
[0,1]A . 

Remark 2.3.  The algebra 
[0,1]:A A   appears in the literature with the name of  idempotent closure 

of A  [15, §.32.5]. In [7, Corollary 2.5], it is proved that 
A  is the smallest  -complemented subalgebra of 

AQ  containing A . In particular, by [7, Theorem 2.3], AA
CC = , and so,  Moreover, it is clear 

that A  is a  -complemented algebra if, and only if, 
AA = , and for any , 

eAA e =][0,
. In 

particular, 
][0,eA  is a  -closed ideal of 

A  because of  -theorem. 

The  centroid A  of A  is defined as the subalgebra of AC  consisting of all elements AC  such 

that AA . 

Proposition 2.4.  Let I  be a  -closed ideal of A . Then AAI I
e


]

][
[0,

= . As a consequence, if 

AIe ][0, ][  then 
]

][
[0,

= I
e

AI . 

Proof. By  -theorem, there is  such that AeAI =  and so AAAeAI I
e


]

][
[0,

== 
. 

Note that if AIe ][0, ][  then AA I
e


]

][
[0,

. 

A subset  of  is said to be  dense if 0=0}=;{ U C , in fact, the above definition can be 

rephrased as follows,  is dense if, and only if, 1=][Ue . 

A subalgebra B  of A  is said to be  dense whenever the condition 0=)(BT , for )(AMT  , 

implies 0=T . It is clear that A  is a dense subalgebra of 
A . 

Proposition 2.5.  Let  be an ideal of . Then  is a dense ideal of the algebra  

Proof. Firstly we claim that if  is a dense ideal of  then  is a dense ideal of the algebra 
A . 

Indeed, if )( AMT   such that  then 0=)(AeT , for all  and so, 

 Hence, 0=)]([ ATe , thus 0=)(AT , and so, by the density of A , 0=T . On the other 

hand, by [9, Theorem 3.2 and Corollary 3.3]  is a semiprime algebra and . Since 

 is a dense ideal of ][0, ][Je  and  , by the claim,  is a dense ideal of 

 

It is well known, see [5, Proposition 4.3] that every  -closed ideal of 
A  is a  -complemented 

algebra, in particular, 
][0,eA  is a  -complemented algebra. In fact, 

Theorem 2.6.  Let  be an ideal of  then  is a  -complemented algebra, and 
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Proof. Firstly we claim that if K  is an ideal of  then KKA . Indeed, if Kk  and )( AAa  , 

then it is clear that 
JAak , and so, there are 1 2, , , ne e e   and Aaaa n ,,, 21   such that 

ii

n

i
aeak  1=

= . Take =1= n

i ie e  . Therefore, since ea  and eakak = , we have Keakak )(= . 

Now suppose that 0=2K . In particular, by the claim, AK   is an ideal of A  (whose square is zero) and so, 

by semiprimeness of A , 0=AK  . Given Kq , by [8, Proposition 2.1.(i)], there exists an essential ideal 

D  of A  such that  Then , and so  

Hence 0=q  because of [8, Proposition 2.1.(ii)]. Since q  is an arbitrary element of K , we conclude that 

0=K . Thus, is semiprime. On the other hand, by Proposition 2.5, is a dense ideal of  and 

hence, by [9, Theorems 2.6 and 3.2],  and therefore, 

 Moreover, since  we have . Thus, by  -theorem , 

is a  -complemented algebra.                                     

From Proposition 2.5, equality  and [9, Corollary 1.6.(3)] we deduce that 

Corollary 2.7.  Let  be an ideal of . Then  is dense if, and only if,  is a dense ideal of 
A .  

 

There are ideals I  of semiprime (even  -complemented) algebras A  such that I  is a 

-complemented algebra but  for all ideal  of . 

Example 2.8.  

Consider the algebra 0= cI  of all null sequences and the algebra lA =  of all bounded sequences 

(endowed with the operations of algebra coordinate to coordinate). Keeping in mind [9, Corollary 5.2] and [7, 

Theorem 2.3], we deduce that the central closure and the extended centroid of the algebra 00c  of all quasinull 

sequences, and so of l  and 0c , is the algebra s  of all sequences. Note that  

  

It is clear that if  then  and so,  

Finally, taking into account  -theorem, we have 00c , 0c  and l  are  -complemented algebras. 

Note that 0c  is a  -dense ideal of l . 

In fact, 

Corollary 2.9.  Let I  be an ideal of A . Then 
]

][
[0,

= I
e

AI  if, and only if, I  is a  -complemented algebra, 

AIe ][ , and I  is a  -closed ideal of A . 

Proof. Assume that 
]

][
[0,

= I
e

AI . By assumption IAe I ][0, ][ , and so, AIe ][0, ][ . By Theorem 2.6, I  is 

a  -complemented algebra and by  -theorem, IAeAAeI II  ][][ == . Conversely, suppose that I  is a 

 -closed ideal which is a  -complemented algebra such that AIe ][ . By  -theorem, AAeI I ][= , and 

so, by assumption, AeI I ][= . Then by [9, Corollary 3.3] and by  -theorem  

 .][0,=)]([0,=][0,][0, ][][][][][][ IIeAAeeAeeAe IIIIII   
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Therefore IA I
e

=
]

][
[0,

 because of Proposition 2.4. 

3  Maximal ideals and  -complementation 

In this section will highlight the relevance of maximal ideals. 

Remark 3.1. For any proper ideal  of  there is a maximal ideal ,  of  such that   

In fact, by applying Zorn’s lemma to the set 

  

we deduce that there is  maximal.  

The next result includes a well-known characterization of the maximal ideals (cf. [3, Appendix B]). 

Lemma 3.2.  

Let  be an ideal of . Then  is maximal if, and only if, for every  either e  or 1 e 

 but not both. In this case, if AQq , then 
PAq  if, and only if [ ]qe  . 

Proof. Suppose that  is a maximal ideal of  and let  Let  

  

It is clear that Q  is an ideal of  containing strictly to the ideal . Therefore, since  is maximal, there 

are  and ][0,ef   such that fg =1 , and so, multiplying by e1 , we obtain that 

 

  Conversely, suppose that  is an ideal of  such that  If there is  then 

and so  that is  

Finally, let AQq  and let  be a maximal ideal of . If  then 

 Conversely, suppose  For each i  we have  

and so,  (note that if  then  and hence 

 But 0=eq , whence ][][ ==0 qeq eee . Since  it follows 

that   

          

As a consequence of Lemma 3.2, 

Corollary 3.3. If  is a maximal ideal of  then either  is dense or  is closed. 

Proof. Let  be a maximal ideal of . If  then PP  ][1 e , and so,  and 

hence  

 Note that if  is a maximal ideal of , keeping in mind Lemma 3.2, the sequence 

because of 1=]
0

[xe . In fact, as a consequence of Lemma 3.2, 

Corollary 3.4. Suppose that there is Aa  with 1=][ae . If  is a proper ideal of  then  is a 
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proper ideal of A . 

Proof. Let  be a proper ideal of . By Remark 3.1, there is  a maximal ideal of  such that 

 Take  Let  Since ][][ == eaa eeee , by Lemma 3.2,  thus 

I  is proper, and so,  is a proper ideal of 
A .  

In a certain sense, the next result is a rereading of the final assertion of  -theorem. 

Theorem 3.5.  Then A  is a  -complemented algebra if, and only if, there is a maximal ideal of  

such that  

Proof. Suppose that A  is a  -complemented algebra. By Remark 3.1 and  -theorem there is a maximal 

ideal  of  such that  Conversely, let  be a maximal ideal  such that 

 Take  If  then, by Lemma 3.2, . In any case, Af  . 

Thus,  and so, by  -theorem, A  is a  -complemented algebra.                            

 

Note that there are (dense) ideals  of  of a semiprime algebra A  such that  but 

A  is not  -complemented. 

Example 3.6.  Take cA = , the algebra of all convergent sequences, and  where 1=)(mfn  if nm   and 

0=)(mfn  in other case. By Proposition 2.1,  is a dense ideal of , and, since  

then  On the other hand, c  is not  -complemented because of the product of the sequence 

can }{=1  where 1=na  for all  and the sequence cn Cbe }{=  with 1=2na  and 0=12 na  

for all  is such that ce 1 . Note that by Theorem 2.6,  is a  -complemented algebra 

which is a dense ideal of c . 

   Obviously,  is not maximal because of )(1,0,1,0,= e  and e1  do not belong to .   

A natural way to made maximal ideals of  is to take maximal elements e  in  and consider the ideals 

of the form ][0,e . 

Proposition 3.7.  Let  Then the following assertions are equivalent:   

    1.  e  is maximal.  

    2.  ][0,e  is a maximal ideal of .  

    3.  
][0,eA  is a maximal  -closed ideal of 

A . 

Proof. 2)1)  Assume that e  is maximal and suppose that  is such that ][0,ef  . By 

-theorem (since AeA  is a maximal  -closed ideal of A , and so, )()(= AfAAeAA   we have 

fe=1 . In particular, fefee )(1=)(10=1  , and so, ][0,1 ef  . Thus, by Lemma 3.2, ][0,e  

is maximal. 

3)2)  Assume that ][0,e  is maximal. By Corollary 2.9, 
eAA e =][0,

 is a  -closed ideal of 
A . 

If I  is a  -closed ideal of 
A , such that IA e ][0,

, by  -theorem 
 AeIAeA I

e

][

][0, ==  , and so, 

][Iee  . Hence either ][0,=][0, ][Iee , and so, ][= Iee  or, [ ][0, ] =Ie , and so, 1=][Ie . 

1)3)  Since 
eAA e =][0,

, e  is maximal because of  -theorem. 

However, there are maximal ideals of the set of all idempotents of the extended centroid which are not derived 
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from a maximal idempotent. 

Example 3.8.  Indeed, the algebra  of all equivalence classes (under equality almost everywhere) of 

Lebesgue measurable functions on [0,1]  with pointwise operations is a  -complemented algebra which lacks 

maximal  -closed ideals (see [5, Example 5.12]), and so, by  -theorem  lacks maximal elements.  

Obviously, the situation is better when the algebra contains maximal  -closed ideals of 
A . We set 

)(ASoc  to denote the  - socle of A , i.e. the sum of its minimal  -closed ideals. 

Corollary 3.9. The following assertions are equivalent: 

 

    1.  A  is a  -complemented algebra which has nonzero  -Socle. 

    2.  There is a maximal element  such that Ae ][0,  

    3.  A  contains a maximal  -closed ideal of 
A . 

In this case, 
][0,eA  is a maximal  -closed ideal of A . 

Proof. (2)(1)  By assumption there is a maximal  -closed ideal I  of A . By  -theorem, ][:= Iee  is 

maximal, and  

(3)(2)  Note that, taking into account that  and  -theorem, 
eAA e =][0,

 is a 

maximal  -closed ideal of 
A  and, of course, by assumption Ae ][0, , AA e ][0,

 

(1)(3)  Let I  be a maximal  -closed ideal of 
A  contained in A . Since  by 

 -theorem, there is  maximal such that 
eAI = . In particular, AIeAAe  =][0, 

. 

Therefore, since by  -theorem, ][0,e  is a maximal ideal of  by Theorem 3.5, A  is a 

-complemented algebra and, by  -theorem, AeAI =  is a maximal  -closed ideal of A . 

4   -complementation and unitisation 

Recall that the  unitisation of an algebra A  over  denoted by 
1A , is the algebra consisting of the vector 

space A  with the product defined by  

 ( , )( , ) : ( , ).a b ab b a        

It is routine matter to verify that : (0,1)1  is the unit element of 
1A , and that the map ,0)(aa  allows to 

regard A  as a subalgebra of 
1A  in such a way that It is well known (cf. the implication 

)()( iiii   in [8, Theorem 3.22] and  -theorem) that  

 ,1 edcomplementAedcomplementA    

and, if A  is unital then the converse is also true (see [8, Theorem 3.10]). The example 3.6 shows, since 
1

0c  is 

isomorphic to c , that in a general setting the converse is not true. 

Next results highlight the special relationship between the  -complementation of an algebra and the 

 -complementation of its unitisation. Firstly note that if A  lacks unit then  because of        

[8, Theorem 3.15]. Secondly, 

Lemma 4.1. Let  such that 1A
e  . If A  lacks unit unit, then either Ae 1  or Ae  1)(1 .  

Proof. Since AA
 1  because of [8, Corollary 3.17], we have  
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 .11 AeAandAeA   (3) 

Suppose that Ae 1 , by (3) 1= ae1 , with Aa  and 0    In particular 11 eeae = , and so, 

by (3), Ae  1)(1  . Hence, since Ae 1 , 1= . Therefore 11 ae = , thus Ae  1)(1 .  

 

Let A  be a semiprime algebra and consider the set  

  

Note that  and so, Indeed, if  , Aa  and 

, we have Aeaeae  111  =)( . 

Lemma 4.2.  If A  is a  -complemented algebra then  is an ideal of  

Proof. Assume that A  is a  -complemented algebra. Keeping in mind  -theorem, it is clear that  

  

as a consequence,  is an ideal of  

As a consequence of Theorem 3.5, we complete [8, Theorem 3.22]. 

Corollary 4.3.  Let A  be a semiprime algebra without unit. Then the following assertions are equivalent: 

 

    1.  
1A  is a   complemented algebra.  

    2.   is a maximal ideal of  

    3.  There is a maximal ideal  of  such that 1A
  . 

 In this case,  and A  are two  -complemented algebras and  

Proof. First of all we note that 
1A  is semiprime, because of [8, Corollary 3.3], and  because of [8, 

Theorem 3.15]. 

2)1) . By assumption and keeping in mind  -theorem, 1A
   and so, since by [8, Corolary 

3.17]) A  , we have, again by  -theorem, A  is a   complemented algebra. Combining Lemmas 4.2, 

4.8, and 3.2, we deduce that  is a maximal ideal of  

3)2)  Take  

1)3)  It follows from Theorem 3.5. 

 

As a consequence of Corollary 3.9, 

Corollary 4.4.  The following assertions are equivalent: 

    1.  A  has nonzero  -Socle and 
1A  is a   complemented algebra.  

    2.  There is a maximal element  such that 1][0,
A

e  .  



Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                            

 
Volume 6, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                     828 

    3.  
1A  contains a maximal  -closed ideal of 

)( 1A . 

 In this case, 
][0,1)( eA  is a maximal  -closed ideal of 

1A .  

We can now consider a particular case: the multiplication ideal and the multiplication algebra of an 

algebra A . It is clear that )(# AM  is an ideal of )(AM  such that 
#( ) = ( ) I AM A M A d . It is well 

known that (see [8, Theroem 4.3 and Corollary 4.4])  AAMAM BBB ==
)(#)(  whenever A  is m.s.p.  

An algebra A  is said to be  multiplicatively semiprime or  m.s.p. whenever both A  and )(AM  are 

semiprime algebras. 

Corollary 4.5.  Let A  be an m.s.p. algebra. Then the following assertions are equivalent: 

    1.  )(AM  is a  -complemented algebra.  

    2.  The set )}(I:{ # AMdee AA B  is a maximal ideal of  .  

    3.  There is a maximal ideal  of  such that ( )M A  . 

Let us see that the equivalences (1) and (2) can be extended to a non associative context. 

 

Remark 4.6.  Note that , by [8, Corollary 3.3 and Lemma 3.8], it is easy to deduce that, if A  has a unit, then 

A  is an m.s.p. algebra, if and only if, 
1A  is an m.s.p. algebra. 

However, 

Lemma 4.7.  Let A  a semiprime algebra without unit. Then 
1A  is an m.s.p. algebra if, and only if, A  is 

m.s.p. and A  is a dense ideal of 
1A . 

Proof. Suppose that 
1A  is an m.s.p. algebra. By [6, Corollary 4.7], A  is m.s.p. Since by [8, Theorem 3.15], 

AA
CC =1  and 1=][ Ae , keeping in mind [9, Corollary 4.5 and Corollary 4.18], we have AA =1

 because of 

 -theorem. Therefore by [4, Theorem 2.6], we deduce that A  is dense. 

Suppose that A  is m.s.p. and A  is a dense ideal of 
1A . By [8, Corollary 3.3], 

1A  is a semiprime 

algebra, and by [8, Lemma 3.8] 
1A  is m.s.p. 

 

Lemma 4.8.  Let A  a semiprime algebra which is a dense ideal of 
1A . Then 

 

 .=
)(# AAM

  

Proof. By [8, Proposition 4.5], )(#)( A
MAAM  . 

Let 
)(# AM

  and Aa . If 
2= AA , then, it follows that there are Acb ,  such that  

 AAAAMcLcLbca bb =))(())((=))((== 2#   

. In other case, there is 
2\ AAc . Since )()()()( 1## AMAMAMAM   because of the density of 

A , it follows that  

 ,))((=))((= 1ALLa aa 11   
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that is, there is Ab ,K  such that 1 ba = . In particular, cbcac = , and so, by assumption on 

c , 0= . Therefore, in any case, Aa  for all Aa , and hence A . 

 

Of course, there are simple algebras not dense in its unitisation. 

Example 4.9.  Let A  be the subalgebra of matrix algebra whose trace is zero, equipped with the 

Lie product [.,.] . It is easy to show that [.,.]),(A  is a simple algebra (in particular m.s.p.) lacks unit of 

dimension 3  such that )(=)(# ALAM , and so, AId  can write 
n

aa LL ...
1

  with Aaaa n ,,, 21  . 

Consider )(...= 111

1
AMLLF A

n
a

A

a  . Note that AFd
A

 (1)1=(1)I 1 , but 0=)()(I 1 aFad
A

  for every 

Aa . Thus A  is not dense in 
1A . 

Note that, taking into account [10, Corollary 4.3]) and [8, Corollary 3.3], if A  is an associative algebra then, 

A  is semiprime if, and only if, 
1A  is m.s.p. Thus, the next result can be considered as an improvement of [8, 

Proposition 4.7]. 

Proposition 4.10.  If 
1A  is an m.s.p. algebra then  

 .=
)(# AAM

  

Proof. Suppose that A  is unital. In this case, )(=)(# AMAM , and therefore by [8, Proposition 4.5], 

)(#=
AMA  . If A  lacks unit then, combining Lemmas 4.7 and 4.8, we have also 

)(#=
AMA  . 

 

   As a consequence we improved the equivalences (1) and (2). 

Corollary 4.11. Let A  be an algebra such that 
1A  is m.s.p.  

    1.  A  is  -complemented if, and only if, )(# AM  is a  -complemented algebra. 

    2.  
1A  is  -complemented if, and only if, )(AM  is a  -complemented algebra. 

Proof. (1) By Proposition 4.10, AAM
 =

)(# . Since because of [8, Corollary 4.4], by 

-theorem, we deduce that A  is  -complemented if, and only if, )(# AM  is a  -complemented algebra. 

(2)  If A  has unit then, by [8, Theorem 3.10] and by (1), 
1A  is  -complemented iff 

)(=)(# AMAM  is  -complemented. Suppose that A  lacks unit. Keeping in mind Remark 4.6, by (1), 
1A  

is  -complemented iff )(=)( 11# AMAM  is a  -complemented algebra. On the other hand, since A  is 

dense in 
1A  because of Lemma 4.7, we have, by [8, Lemma 3.8], there is an algebra isomorphism from 

)( 1AM  onto )(AM , and so, )( 1AM  is complemented iff )(AM  is a  -complemented algebra.  
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