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Abstract

In this paper, we shallobtain some relations between the orders and types of entire functions represented by
multiple Dirichlet series. By taking asymptotic behavior in their coefficients. The results has been given in the
form of theorems.
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1-Introduction.
Consider themultipleDirichlet series:
f(51,52) = X =0 Gn EXD(SthmSatte) , (5= oytity, j = 1,2) (1.1)

Where a,, , € C the field of complex numbers, An, b, are real 0<A<A<....Ay—00, 3 <Ho<....<Up—0.A.l
Jansauskas [1] has proved that if:

logm =0,lim,, ., logn _ 0 (1.2)

lim =
m=ee Am Hn

Then the domain of convergence of the series (1.1) coincides with its domain of absolute convergence, Also
sarkar [2, pp.99] has shown that the necessary and sufficient condition that the series (1.1) satisfying (1.2) to
be entire is that:

. log|am,n|_
lim,, 47 5o Tt % (1.3)

Let M(o1,62)=sup {|f (ay + ity , o, + it,|}, be the maximum modulus of f (s;,5;) on the tube Re s=c;, j=1,2.

(1.4)

We define the order p (0< p < oo) and typeT (0< T < o0),0f f(S,S) ,[4] as:
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1

. logM (01,07) _ s Am N p——
hma1.02—’°° W =p 'eprm%}lIlloosup{(/lm [T )lam,nl Jhm tin (1.5)
Now we have the following theorem [3, pp.52], which will be used in the next section.

Theorem 1.1: If f (sy,S,) is an entire function of order p ( 0< p < ), then

Am log Am +itn log pn (1 6)

-1
log |amyn |

p=limy, ;00

In this paper, we shall obtain some relations between two or more entireDirichlet series and study the relations
between the coefficients in the Taylor expansion of entire Dirichlet series and their orders and type.

2-Main Results

Theorem 2.1:

If f1 (S1,52) =Xm.n=0 afj‘)n eXp(S1d1m +Sal1 ) » T2(51,82) =Xm n=0 ar(,?n exp(Sidym +Sa12,) be entire functions
of orders p; (0< p; < ) and p, (0< p; < ). Then the function f (S1,S2) =X n=0 Am.n EXP(S1Am*S2ltn),
where

(I) )\1,m~ )\Z,m"’)\m 1 Ul,nN UZ,nNHn and

(i) |amn|~ |a,(:)n| |a,(,f,)n is an entire function of order p, such that

1,1, 1 (2.1)
p 1 P2
Proof
Since Ay m~ Aom~Am , Ui~ Han~Hy it is evident that :

1imm_,oosuplol1ﬂ = lim,;, Lo supl;ﬂlimm_,oosup l;gm = 0, Also (2.2)

m 1,m 2,m
) logn ) logn ) logn
lim sup = lim sup = lim sup =0
n-o HUn n-oo Uin m-o Uon

Since f; (51,52) and f, (s1,8;) satisfy (1.2) by hypothesis ,further since f; (s1,5,) and f, (s1,5;) are entire functions,
bounded on

(61,02)<(X1,X2)<(c0,00) for any( X1,X2)<(c0,0) .

(1

m,n

)

The series Y, =0 |a exp(61d1 m tO281 1) +2m n=0 |amrn

exp(61dzm TO242 ) (2.3)

Are convergent for every 6 =(61,06,)and as Ay m~ Aam~Am , Hu.n~ Han~Hn , We shall have :

(2)

m,n

eXP(O1Ay +02ity)<o0 and Bz g |a

Sinn=0 |ahn eXp(Giy +Oaftn)<o0,for every o = (61,6)
(2.4)

Hence it follows that:

Volume 6, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 747




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

. 1 o 1 2
lim,;; ;00 |a,(ﬂ)n| = 0 andY;y; n—o |a,(nzl| |a,(n,31 exp(614,, +0a, )< (2.5)

And since |an, » |~ |a,(,})n| |a,(,331 ,we have Y5 _o|@m.n| exp(c1hmtoapn)< oo for every ¢ =(c1,0,).hence f
(s1,82) is entire function .

Again using (1.6) for f; (s1,5;) and f, (51,5,) we get

1
lim,,, , e Soglonal 1 G A~ Aam~Am » Hyn~ Han~Hn And (2.6)
T Ain 10g A +ty logpy — p1” ’ ’ T ’
@
—10g|am n 1
lim : =— 2.7
ML An l0g Am +un log i p2 2.7)

Therefore, for every >0, we have for sufficiently large m, n .

1
_log|a,(n?,l i € (2 8)
Am logdm +py logpn, p1 2 '
@
—log|a 1
a1 e (2.9)
Am log Am +pn loguy p2 2
@ ||, @®
—log|a a 1 1
Or 3 0n >— +—+g (2.10)
Am logdm +un logun p1 P2
. 1 2
And, since |a, »|~ afn‘)n a,(nl)n , We get,
_lo.g|am,n| >i +i
Am logdm +un logun p1 p2
1 1.1
Oor —>—+— (2.11)
P 1 P2
Corollary:

Let fi(s1,82) =Xm n=0 a,(,’f,)n exp(Silkm +Sotkn) » Where k=1,2,.....p be entire functions of non-zero finite

orders py, ... ..., p,. respectively, then the function
f (51,52) =X n=0 @mn EXP(SiAm+S2iy) , Where

)\k,m“’ )\m yMkn~ Hn

| n |~ Ty |28, | | is an entire function such that

% >yP_, i , where p is the order of f (515,). (2.12)
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Theorem 2.2: Iff; (51,52) =X n=o0 a,(,flzl eXp(Sidym +Sat1 n) F2(S1,82) =X n=o a,(,f,)n exp(sida m +Sapp n)be

entire functions of orders p; (0< p; < o0) and p, (0< p, < o). Then the function f (51,S2) =X =0 Am n
exp(siimt+Saun),where

(') )\l,m" )\Z,m"‘)\m y Hg,n~ Ho,n~Mn and

N -1 -1 -11
(i) 10g|amn|  ~ |{log |afnl?n log |a,(j?n 12 (2.13)
Is an entire function suchthat:
1
(%)z (ﬁ)i, where p is the order of f(s1,S,) . (2.14)
1P2

Proof:-Sincef; (s1,5;) and f, (s1,52) are entire functions , therefore using (1.3) for these two functions , we
have for an arbitrary

¢ > 0 and large p; , p, and since Ay~ Azm~Am , Hin~ Han~Ln , We have :
O TN
(Lre)<log(|asn | Y < lo+e)
(2) -1 ;
(Lre)<log(|aley| Yamin< (i2+e) (2.15)
Therefore for (m+n) >k= max ( ky,k,) and let L= max (L, ,l; ) we have :

-1 1
)lm +un <(|_+8)

(L-g)<log( a,(:’)n
2 Th——

(e)<log(|asy| Y in< (L+e) (2.16)

Multiply both sides we get:-

-1 -1 1
(ey<tlog |alh|  tog|al| ym i< Loy

Or
-1 -1 1 1
(e) <{(log |ain| ~log|aiin| yaym i< (le) (2.17)
: -1 @ |t @ |13 .
Since log|ay, | ~ {l0g|am,n log |am,n )z| , therefore for large m+n we have:
q. 1
(L-e) <{log|am | Frm +un< (L +e) (2.18)
Or
.t
lim sup{log|am,n| Pm tun = o0 (2.19)
m,n—oo

Hence f (s1,52) is an entire function . Now from (2.6) and (2.7), we have for sufficiently large (m+n)
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—10g|a;(nl,)n 1 ¢
Am log Am +pn log py >Z 2
—log|aff,)n 1 ¢
A log Ay +iiy log pn Z_ E (220)
Or
1
~log|a m 1092 + it logp, ) G- - 3)
1
—1og| m 10g 2 + b L0gHn ) 9)
2
1
log |a m 1092 + iy logpy, )? (— - PP (2.21)
Or
1 a?, A loga,, l z
og|a >( 0gAm + iy ogun)( )
Or
s os 2,
log |a ! log |a 2) 112 1 L
>
ml}lrlloosup logﬂ +in logun (plpz) (2.22)
. -11
Now if Iog|am,n| {log |a log }2| , then we have
lim sup-~ log|ama|”" ( )z (2.23)
m,n—oo m 10gdm +iiy logun — “p1p2 '
Or
1 1 1
->
p (plpz)z'
Corollary:

Let fi(s1,52) =Xmn=0 a,(,’f,)n exp(Sidkm +SaMkn) » Where k=1,2,.....pbe entire functions of non-zero finite
orders py, ... ..., p,. respectively, then the function
f(51,52) =X n=0 @mn EXP(SiAm*Saly) , Where

-1 1

I3

Jis an entire function such that :

-1
)\k,m“’ )\m WHikin™ Hn ,|09|am,n| ~ |{HZ=1 lOg a( )

1
L), where p is the order of f(s1,5).
Hk 1Pk

2 (m

I
p
Theorem 2.3:-If f; (51,52) =X n=0 ar(nl,)n eXp(Sidim +Sat1n)  F2(S1,82) =X n=0 ay(rf,)n eXp(S1dom +Saiz ) bE
entire functions of orders p; (0< p; < o) ,p; (0< p; < 00) and types T,(0< T < ), T,(0< T, < )
respectively , Then
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The function f (S1,52) =Xm n=0 Am n EXP(S1Am+Saltn), Where

)|amn|~ |{| (1) | | (2)n|}%|, (iDALm~ Aom~Am » H1in~ Hzn~Hn - IS an entire function such that

2 1

(pT) < (plTl)Pl (p,T,)?2 , Where p and Tare the order and type off (s;,s,)respectively and % = pi + pi
1 2

Proof

We prove as in the proof of theorem 2.1 that f (s;,S,) is an entire function when |am n |~ |{

,Further using (1.5)and condition (ii) we have :

1

p
ar(rf,)n| Y (2.24)

. Am
ep1T1= lim sup{d, "™ p, *»

p 1
aff,)n| Yomtin (2.25)

. Am
eppTo= lim sup{dy, ™" p, *»
Or

epyTy = lim_sup{(A ™" i #n J71 [afy) [Yomei (2:26)

L P2
epaTy = lim sup{(hn ™™y " 397 g [y (227)

m,n—oo

From (2.26) and (2.27), we get for arbitrary >0, we have:

3 N N ES
(o™ 0308 [, [P < {epy (Ty + )31 (2.28)
For m+n>k;

3 L @) e ES
(Ao ™ 0 Y02 |, [P < {epy (T + £)}o2 (229)
For m+n>k,

Thus for m+n>k=max (ky,k,), and (;2 = pi + pi ), we have:
1 2

1

2 1
(o M 70 )2 |ai +&)}ri{ep, (T, + &)}2

Or

1 1

A, ] }Am“‘” < {ep1(Ty + &)}r1{ep,(T, + &)}z (2.30)

(A ™™ ﬂn)p(

since|ay |~ |{|amn }z we get

1 1 1 1
lim sup{(An "™ thy 7 V2 |G |[Yrmn < {epy(Ty + £)Y201{ep, (T, + £)}22

m,n—oo

Or
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1 1 1 1
lim sup{[(An "™ tn ¥ )@ | T Pomten < {epy(Ty + )32 1{ep, (T, + £)}2°2

m,n—oo
Or
A p— 1 1 1 1
mlrilllloosup{[(/lm " Un Hn )lam,n| ]Amﬂln }p < {epl (Tl + g)}2p1{ep2 (TZ + 8)}2p2
Or

1 1

(pT)> < (p1T1)P1(p2T2)?2(2.31)

2 1 1

Where p and T are the order and type off (sy, S,) respectively , hence (pT)? < (p1T1)71(p,T2)*2 .

Corollary:
Let fi(S1,52) =Xmn=0 af,'f‘)n exp(sidkm +Salkn) » Where k=1,2,.....p be entire functions of non-zero finite
orders pq, «.. ..., Pp- And types TiT,, ... T,, then the function

f(S1,2) =Xm n=0 Am n EXP(S1hmtS2pn) , Where

)\k,m"’ )\m yHkn™~ Hn

1
|@m |~ |(1‘[£:1 |a,(,]f31 |)5 , is an entire function such that:

1

P 1
(pT)r < H£:1(Pk Ty )Pk , Where p and T are the order and type off (S;,S,)respectively.
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