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Abstract 

In the given paper we give auxiliary results allowing proving the main theorem connecting weight norms 
of derivatives of polynomials with weight norms of polynomials themselves. 
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1. Introduction 

In the paper [1] the estimations connecting the norms of derivatives of polynomials with the norms of the 

polynomials themselves with different weight functions are cited in the terms of singular characteristics.  

In the metric C  in a complex plane these estimations were obtained in the papers of V.K. Dzjadyk and P.M. 

Tamrazov. In the metric pL  similar estimations were obtained in the paper of J.I. Mamedkhanov [2]. In the given 

paper that complements the paper [1] similar estimations were obtained in a more wide class of curves. We give 

some necessary notions, facts and definitions. 

Let   be a closed curve in a complex plane with parametric representation  tzz  lt 0( , l  is length of 

), the function  z  map the exterior of a unit circle 0  onto the exterior of   and   0z  map the interior 

of a unit circle 0  onto the interior of  , the functions be inverse to the functions  zw   and  zw 0 , 

respectively,  z  and   0z , 1  be a level of the curve   corresponding to the equation 

   1z  0 . 

Let t  be some fixed point on 1  0 ,   dtd ,  be a distance from the point t  to the curve  , 

   ,:   tzzt      , tt  tmes  . Obviously,    t as  ,  d,0 . 

We denote by J  a class of Jordan rectifiable curves   for which the relation 
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is valid ( d
~

 is a distance from the point tt /11  to the curve  ) for the given 1  and all nt /11 , and J  is 

a class of curves 
J  for which 

 


 ,t  almost decreases. 

Let’s consider a class of curves   for which      Ct for d2 . If we denote this class of curves by 


S , it is easy to show that the class 


S  coincides with the class S  introduced by V.V.Salayev [3], i.e. the 

following statements [1] are true. 

Statement 1.   SS . 
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Statement 2. If ,1 21   that 
21  JJ  . 

Statement 3. The imbeddings 

S J ,  


J S . 

   Now, let’s consider the quantity 
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The statements 1, 2 and 3 will help us in future to prove the following theorem formulated in [1]. 

2. Results and Discussion 

 Theorem 1. Let   be an arbitrary rectifiable Jordan curve on which for any   ,0s and any natural j  it 

is valid the estimation 
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where  zPn is an algebraic polynomial of degree Nn , 1p . (The sings ≍, ≼determine ordinal relation). 

To prove this theorem we’ll need the following theorem of independent interest. 

Theorem 2. Under the conditions of theorem 1 on the curve , whatever were natural number j and 

  ,s  for the j -th order derivative of the polynomial  zPn of degree n  for 1p  it is valid the inequality 
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To prove this theorem we’ll need the following lemma that we’ll prove in the given paper. 

Lemma. Under the conditions of theorem 1 on the curve   for the polynomial  zPn  of defree n  and 

  ,s  it is valid the inequality 
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Proof. At first we consider the case 0s . We introduce the auxiliary function 
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Since  zz~ as z , then   0zs  as z . Therefore, each branch is analytic and one-valued out 

of the domain G . Consequently, for  zs  we’ll have 
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Now, if we take into account  
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lemma it suffices to show the validity of the relation 
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where nt /11 . 

Show that validity of this relation follows immediately from the arguments given in the paper [2]. Indeed, let 
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It will follow from the obvious relation  ~ ≍ ~   that tt 
~

≍
~

~
tt  . Now, if we take into account that 

the relation 
~
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,

~
 is valid for the considered class of curves, the lemma in the case 0s  is proved. 

In the case 0s  the proof is conducted by means of similar arguments after introduction of the auxiliary 

function 
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The lemma is proved. 
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