

Volume 9, Issue 1

Published online: August 06, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

When M-small modules are simple

Tayyebeh Amouzegar

Department of Mathematics, Quchan University of Advanced Technology, Quchan, Iran

Abstract.

In this paper, we define and study *SMSI*-modules. A module *M* is called an *SMSI*-module if every *M*-small module is simple in σ [M].

Keywords: *SMSI*-module; small module; simple module.

2000 AMS Mathematics Subject Classification: 16D10, 16D80.

1 Introduction

Throughout this paper, R will denote an arbitrary associative ring with identity, M a unitary right R-module and S = End(M) the ring of all R-endomorphisms of M. By $\sigma[M]$ we mean the full subcategory of Mod-R whose objects are submodules of M-generated modules. We will use the notation $N \leq_e M$ to indicate that N is essential in M (i.e., $N \cap L \neq 0 \forall 0 \neq L \leq M$); $N \ll M$ means that N is small in M (i.e. $\forall L \leq M, L + N \neq M$). The notation $N \leq^{\oplus} M$ denotes that N is a direct summand of M.

In this note, we define and study SMSI-modules. A module M is called an SMSI-module if every M-small module is simple in $\sigma[M]$. For example, every simple module is an SMSI-module (Example 2.3). In Section 2, we show that if M is an SMSI-module and $N \in \sigma[M]$, then every nonzero submodule of N is coatomic. It is shown that if M is an SMSI-module, then Rad(M) is artinian and noetherian.

We denote the radical of M by Rad(M). The second radical of M is defined to be the submodule $Rad^2(M)$ of M given by $Rad^2(M) = Rad(Rad(M))$. Letting $Rad^{1}(M) = Rad(M)$ and proceeding in this fashion, we manufacture the radical series or (upper) Loewy series of M as the descending chain of submodules

$$M \geq Rad^{1}(M) \geq Rad^{2}(M) \geq \ldots \geq Rad^{\alpha}(M) \geq Rad^{\alpha+1}(M) \geq \ldots;$$

where, for each ordinal $\alpha > 0$,

$$Rad^{\alpha+1}(M) = Rad(Rad^{\alpha}(M));$$

and if α is a limit ordinal then

$$Rad^{\alpha}(M) = \bigcap_{0 < \beta < \alpha} Rad^{\beta}(M).$$

Since M is a set, at some stage the radical series of M must become stationary, i.e., there is an ordinal ρ such that $Rad^{\alpha}(M) = Rad^{\rho}(M)$ for all ordinals $\alpha \geq \rho$.

$\mathbf{2}$ When *M*-small modules are simple

Definition 2.1 A module M is called an SMSI-module if every M-small module is simple in $\sigma |M|$.

Example 2.2 Let p be a prime integer and M denote the Z-module $\mathbb{Z}/p^k\mathbb{Z}$ with $k \geq 3$. Let $N = p\mathbb{Z}/p^k\mathbb{Z}$. Since $\mathbb{Z}/p^k\mathbb{Z}$ is hollow, N is M-small. But N is not simple, so M is not an SMSI-module.

Example 2.3 Let M be a simple module. It is clear that every module in $\sigma[M]$ is semisimple. Now, if L is a M-small module, then there is a module $H \in \sigma[M]$ such that $L \ll H$. Since H is semisimple, L is a direct summand of H. Hence L = 0. Thus M is an SMSI-module.

Proposition 2.4 Let M be a module. Then M is an SMSI-module if and only if every module in $\sigma[M]$ is an SMSI-module.

Proof. (\Rightarrow) Let M be an SMSI-module and $N \in \sigma[M]$. Assume that $A \in \sigma[M]$ $\sigma[N]$ is N-small. Note that $A \in \sigma[M]$ and A is M-small. Since M is an SMSI-module, A is simple in $\sigma[M]$ and hence simple in $\sigma[N]$. (\Leftarrow) Clear.

Proposition 2.5 Let M be an SMSI-module. Then:

- (1) $Rad(N) \subseteq Soc(N)$ for every module $N \in \sigma[M]$.
- (2) Every module $N \in \sigma[M]$ has a maximal submodule.

Proof. (1) Clear.

(2) Let $N \in \sigma[M]$. By (1), $Rad(N) \subseteq Soc(N)$. If Soc(N) = N, then N has a maximal submodule. Assume that $Soc(N) \neq N$, then $Rad(N) \neq N$. This implies that N has a maximal submodule, again. \Box

A module M is called *coatomic* if every proper submodule is contained in a maximal submodule.

Theorem 2.6 Let M be an SMSI-module and $N \in \sigma[M]$. Then every nonzero submodule of N is coatomic.

Proof. Let L be a proper submodule of N. By Proposition 2.5, N/L has a maximal submodule T/L. So T is a maximal submodule of N which contains L. Hence N is coatomic, and the theorem is proved since every submodule of N belongs to $\sigma[M]$.

The following example shows that a module for which every submodule is coatomic needs not be an SMSI-module.

Example 2.7 In Example 2.2, we show that the \mathbb{Z} -module $\mathbb{Z}/p^k\mathbb{Z}$ with $k \geq 3$ is not an *SMSI*-module. It is clear that every submodule of M is coatomic.

Corollary 2.8 Let M be an SMSI-module. Then for every module $N \in \sigma[M]$, $Rad(N) \ll N$.

Corollary 2.9 Let M be an SMSI-module and $N \in \sigma[M]$. Then $Rad^{\alpha+1}(N) = 0$ for all $\alpha \ge 1$.

Proof. By Corollary 2.8, $Rad^{\alpha}(N) \ll N$ for all $\alpha \geq 1$. By hypothesis, $Rad^{\alpha}(N)$ is simple. Thus the zero submodule of $Rad^{\alpha}(N)$ is maximal. Hence $Rad^{\alpha+1}(N) = 0$ for all $\alpha \geq 1$.

Proposition 2.10 If M is an SMSI-module, then Rad(M) is artinian and noetherian.

Volume 9, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

Proof. By Corollary 2.8, every submodule K of Rad(M) is small in M. By hypothesis, K is simple. Thus Rad(M) is artinian and noetherian.

Theorem 2.11 Let $f : M \to N$ be an epimorphism and $M/Rad^2(M)$ is semisimple. Then $f(Rad^2(M)) = Rad^2(N)$ and $Rad^2(N) = Rad(N)$.

Proof. It is clear that $f(Rad^2(M)) \subseteq Rad^2(N) \subseteq Rad(N)$. Consider the natural epimorphism $\overline{f}: M/Rad^2(M) \to N/f(Rad^2(M))$. Since $M/Rad^2(M)$ is semisimple, $N/f(Rad^2(M))$ is semisimple. Thus $Rad(N/f(Rad^2(M))) = 0$. But Rad(N) is the smallest submodule K of N such that Rad(N/K) = 0, hence $f(Rad^2(M)) = Rad^2(N) = Rad(N)$.

Corollary 2.12 Let $f : M \to N$ be an epimorphism and let $\alpha \ge 1$ be any ordinal. If $M/\operatorname{Rad}^{\alpha}(M)$ is semisimple, then $f(\operatorname{Rad}^{\alpha}(M)) = \operatorname{Rad}^{\alpha}(N)$ and $\operatorname{Rad}^{\beta}(N) = \operatorname{Rad}(N)$ for all $\beta \le \alpha$.

Proposition 2.13 Assume that $Rad^{\alpha}(M)$ is essential submodule of M for some ordinal $\alpha \geq 1$. Then:

(1) Let $K \subseteq L \subseteq M$ be direct summands of M. Then $Rad^{\alpha}(K) = Rad^{\alpha}(L)$ if and only if K = L.

(2) If $Rad^{\alpha}(M)$ has ACC(DCC) on direct summands, then M has ACC(DCC) on direct summands.

Proof. Let $M = K \oplus K'$. Then $L = K \oplus (L \cap K')$ and $Rad^{\alpha}(L) = Rad^{\alpha}(K) \oplus Rad^{\alpha}(L \cap K')$. If $Rad^{\alpha}(K) = Rad^{\alpha}(L)$, then $0 = Rad^{\alpha}(L \cap K') = Rad^{\alpha}(M) \cap (L \cap K')$. Since $Rad^{\alpha}(M)$ is essential in $M, L \cap K' = 0$ and so K = L. (2) This is a consequence of (1).

Acknowledgment

"This work was supported by Quchan University of Advanced Technology".

References

- [1] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules*, Frontiers in Mathematics, Birkäuser Verlag, 2006.
- [2] R. Wisbauer, *Foundations of module and ring theory*, Gordon and Breach, Reading, 1991.