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Abstract.

This paper studies the existence and uniqueness of a mild solution for a neutral stochastic
partial functional differential equation with infinite delays using local no-Lipschitz. An example
is provided to illustrate the obtained result.

1 Introduction
In this paper, a neutral stochastic partial functional differential equation is considered in a real

separable Hilbert space of the form
d[X(t) +a(t, X(1)] = [AX(t)+ f(t, Xt —7(t)))]dt + g(t, X(t — 6(t)))dW(t), t >0,

Xo() = €& D% ([m(0),0].H), (1.1)

where ¢ — 7 (t),t — d(t) — oc With delays 7(t),d(t) = o0 t— o0.

The existence and uniqueness and stability with delays has been considered by many authors.
Under a global Lipschitz and linear growth condition, Taniguchi [15] and Luo [5] considered the
existence and uniqueness of mild solutions to stochastic neutral partial functional differential
equations by the well-known Banach fixed point theorem and strong approximating system,
respectively, Govindan [9], showed, by stochastic convolution, the existence, uniqueness and
almost sure exponential stability of stochastic neutral partial functional differential equations

under global Lipschitz and linear growth condition. By the comparison principle, Govindan [10]
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the existence and uniqueness of mild solution to stochastic evolution equations with
rariable delays under a less restrictive hypothesis than the Lipschitz condition on
the nonlinear terms. For many practical situations, the nonlinear terms do not obey
the global Lipschitz and linear growth condition, even the local Lipschitz condition,
and the readers can refer to Govindan [10], Rodkina [3], Taniguchi [14], [15], He [5],
Yamada [15] and reference cited therein. More recent results e.g., by Ren and Sak-
thivel [17], David Castillo-Fernndez (3] and Bin Pei Xue Pei [18] have established
the existence and uniqueness of mild solution for a class of second-order neutral
stochastic evolution equations with infinite delay and Poisson jumps by means of
the successive approximation. Nan Ding [7] established the exponential stability in
mean square of mild solution, for neutral stochastic partial functional differential
equations with impulses.

With the preceding reason, our objective here is to study the existence and unique-
ness of equation (1) exploting the theory of a stochastic convolution integral and
local no-Lipschitz condition.

The rest of this paper is organized as follows. In Section 2, we introduce some pre-
liminaries. In Section 3, we prove the existence and uniqueness of the mild solution.

Finally, in the 4 sixth Section, we give an example to illustrate the theory.

2 Preliminaries

Throughout this paper, we work in the frameworks used in [5]. Let {Q, §, P} be a
complete probability space equipped with some filtration {§¢};>¢ satisfying the usual
conditions, i.e., the filtration is right continuous and §o contains all P-null sets. Let
H, K be two real separable Hilbert spaces and denote by < -, >, < -, - > their

inner products and by | - || #,

- ||k their vector norms, respectively. We denote
by L(K, H) the set of all linear bounded operators from K into H equipped with
the usual operator norm | - ||. In this paper, we always use the same symbol || - ||
to denote norms of operators regardless of the space potentially involved when no

confusion possibly arises.
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Let {WW(t).t > 0} denote a K-valued {J};>o-Wiener process defined on {Q, §¢, P}

with covariance operator @, i.e.,
E<W(t)he>g<W(s),y>k=(tAs) < Qu,y >k for all z,yeK

where () is a positive, self-adjoint, trace class operator on I{. In particular, we shall
call such W(t),# > 0, a K-valued Q-Wiener process with respect to {F¢}e>o-
In order to define stochastic integrals with respect to the ()-Wiener process W (t),

we introduce the subspace Ky = QY/?(K) of K which, endowed the inner product
—1/2 —-1/2
<u, v = Q V20,0720 >k,

is a Hilbert space. Let 118 = Lo( Ky, H) denote the space of all Hilbert-Schmidt
operators from Ky into H. It turns out to be a separable Hilbert space equipped

with the norm
H‘I’Hiu = tr((TQV2)(WQV2)*)  for any Ve LY.
2
Clearly, for any bounded operators W € L(K, H), this norm reduces to [[W|[z =

tr(PQW*). For arbitrarily given 7' > 0, let J(t,w),t € [0,7], be an Fs-adapted,

Eg—valued process, and we define the following norm for arbitrary ¢ € [0,77:

t
[T = {EA tr(J(s, w)QY?)(J (s, w)QV?)*)ds}1/2.

In particular, we denote all E(Q)-Va.lued predictable processes .J satisfying |J|p < oo

by U?([0,T); £Y). The stochastic integral

t n t
/ J(s.w)dW(s) = L* — lim / VAT (s, w)edBE,  te[0.7],
=10

0 Nn—r0Q

where W(t) = 3.°°, /AiBje;. Here (A; > 0,i € N) are the eigenvalues of @ and
(e;.i € N) are the corresponding eigenvectors, and (Bj,i € N) are independent
standard real-valued Brownian motions. The reader is referred to [3] for a systematic
theory concerning stochastic integrals of this kind.

Let 7(¢),6(t) € C(R., Ry ) satisty t — 7(¢) — oo, t —6(t) = 00 as {— oo, and

m(0) = max{inf(s — 7(s), s > 0),inf(s — d(s),s > 0)}.
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We use D%D([m(O),O];H ) to denote the family of all almost surely bounded, §o-

; ; ;
measurable, continuous random variables from [m(0),0] to H. Denote the norm
lellp by

lellp = sup  Elle@)] .
m(0)<6<0

A semigroup {S(t),t > 0} is said to be exponentially stable if there exist positive

constants M and a such that ||S(t)|| < Me“,t > 0. If M = 1, the semigroup is

said to be a contraction. If {S(¢),t > 0} is an analytic semigroup, (see Pazy [1])
with infinitesimal generator A such that 0 € p(A) (the resolvent set of A), then it
is possible to define the fractional (—A)®, for 0 < o < 1 as a closed linear operator
on its domain D((—A)%) = H,, Furthermore, the subspace D((—A)“) is dense in H
and

lella = I(=A)2llz =€ D({(=A)%)

For convenience of the reader, we will state the following lemmas that will be used

in the sequel.

Lemma 2.1 (see [1]) Let A be the infinitesimal generator of an analytic semigroup

{S(t).t > 0} If0 € p(A), then

(i) S(t): H— H, for everyt > 0,0 > 0.

(ii) For every x € H,, one has
S(t)(—A)%z = (—A)“S(t)x. (2.2)
(i1i) For every t > 0 the operator

1(=A)*S(t)||g < prat ™™, a >0, (2.3)

(iv) Let 0 < a <1 and x € H,, Then

Stz —z(lp < vat®|[(=A) 2| H (2.4)
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Lemma 2.2 (see [13]) Let-A be the infinitesimal generator of an analytic semigroup
of bounded linear operators {S(t),t > 0} in K. Then, Then, for any stochastic process
F :[0,00) = H which is strongly measurable *w-éthfgE||(—A)“F(t)||pHdt < o0,p >

2, 0<T <o, the following inequality holds for O <t <T':

Bl [ )t~ F@asly < ko) [ BNAPOlds 25)

provided 1/p < o < 1, where

(p = 1P [D(po — 1/ (p = )P
(pajp]

k(p,a.o) = M (2.6)

and I'(+) is the Gamma function.

3 Existence and uniqueness

In this section, we establish the existence and uniqueness of a mild solution of (1.1),
under Caratheodory conditions. Let —A : D(A) C H — H be the infinitesimal
generator of an analytic semigroup of bounded linear operators {S(¢),¢ > 0} defined
on H. Let the functions f(¢,u), a(t,u), and g(t,u) be defined as follows:
f:RyxH—H, a:RyxH,— LK H), g:Ry xH— L(K,H) are Borel
measurable.

Let the following assumptions hold a.s.:

(H1) —A is the infinitesimal generator of an analytic semigroup of bounded linear

operators {S(t),t > 0} in H and the semigroup is a contraction;

(H2) There exists a function H(t,r) : Ry x Ry — Ry such that H(t,r) is locally
integrable in ¢ > 0 for any fixed » > 0, and is continuous, monotone nonde-
creasing, and concave in r for any fixed t € [0,7]. Moreover, for any fixed

te0,7)and £ € H,

L7 Ol + gt )z < HEENEND), ¢ € [0.7];
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and any K (T) > 0, the differential equation

% = K(T)H(t,u), tel0,T],

has a global solution for any initial value ug.

(H3) There exists a function G(t,r) : Ry — R, such that G(¢, r) is locally integrable
in t < 0 for any fixed » < 0, and is continuous, monotone nondecreasing, and
concave in r for any fixed ¢t € [0,7], and G(t,0) = 0 for any fixed ¢ € [0,T7],

Moreover, for any fixed t € [0,7] and &, € H,

L7 (.8) = St mllF + llg(t.&) — gt < G EllE = nlD), e 0.7].
For any constant A (17) > 0, if a nonnegative function z(t) satisfies

z(t) < R’(T)/O G(s,z(s))ds, te]0,T],

then z(¢) = 0 for any t € [0, T].

(H4) The mapping a(t, x) satisfies that exists a number a € [0, 1] and a positive Kg

such that, for any £&,n € H and t > 0,a(t,z) € D((—A%) and
[(=A)%a(t.&) — (=A)%a(t.n)|lu < Koll§ = nllp-
Moreover, we assume that a(t,0) = 0.

(H5) The function a(f,u) is continuous and that there exists a positive constant

C' = C(T) such that

|la(t,u) — a(t,v)|| g, < Cy

|'U. — 'UHD
la(t, ullg, < C2(1+ [[ulln).
for all t € [0,7] and u,v € D

We now introduce the concept of a mild solution of (1.1).
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Definition 3.1 A stochastic process {X (t),t € [0,T]},0 <T < oc, is called a mild
solution of (1.1) if:

(i) X(t) is adapted to §i,t > 0;

(ii) X(t) € H has cadlag paths on t € [0,T] almost surely, and for arbitrary
0<t<T,

X() = SOIEO) +a(0.6)] - alt. X,) - /0 AS(t - s)a(s, X,)ds
= —1—/ S(t—s)f(s,X(s—7(s)))ds + [ S(t—s)g(s, X (s —0(s)))dW(s),
0 0

and

Xo=¢&¢€ D%D([:rn([))j(]},H).

Theorem 3.2 Suppose that the assumptions (H1)-(H5) are satisfied. Then, there

exists a unique mild solution to Eq.(1.1).

Proof. Denote by S the space of all Fo-adapted processes ¢(t,w) : [m(0),00) x Q —
R, which is a.s. continuous in t for fived w € Q. Moreover, ¢(s,w) = £(s) for
s € [m(0),0] and E|¢(t,w)||3; — 0 as t — co. It is then routine to check that S is

a Banach space when it is equipped with a norm defined by
lolls =sup El¢(0)]|F;  for each ¢e€S.
>0

Define an operator © : & — S by O(x)(t) = p(t) for t € [m(0),0] and for t > 0,

O(x)(t) = SHEO) +al0,8)] —alt, X(1)) —/D AS(t = s)a(X (s))ds
+/ S(t—s)f(s,X(s—7(s)))ds + / S(t—s)g(s, X(s—0(s)))dW (s)
0 0

6
= Y L) (3.7)
i=1
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We first verify the mean square continuity of @ on [0,00). Let ¥ € S,t1 > 0, and
\r| be sufficiently small; then
6
El©(z)(t +7) = O(()(t)llF <6 Elli(t +7) = Titt)|7;-
i=1
By virtue of closed ness of (—A)* and the fact that S(t) commutes with (—A)® on

H., we have by Lemma 2.1 and the assurnption (H4) that

E|L(ti+7) = L)z = ISt +7r)—S(0)E0)|F

= E[(S(r)—1)S(t1)&0) ||
< AEpAtT R e T E| D,

E|L(ty +7) = Lt)|E = El(S() = 1)St)(=A4)*(=4)"a(0,¢)|IE
<yt e T2 | (= A) T 5 (1 + ElEND).

and

E|Is(ts +7) = It} < (A EEI(-A) " alts + 7, Xo ) — (—A)%alts, Xi,) I3
Next, using Lemmas 2.1 and (2.2) and assurnption (Hj), we obtain

Elno+n) =Ll = B [ (<48t = 9)(S0) = Dals, Xds I

M'? 1"(20:—1 fa
< MO T iy (ste) Dt Xl

t1+r
+ [ Bl S 0ats, X, )
t1

M?E T(2a —1) L orh "

Mz OO S o [ Bl Al X s

IA

t1+r

re2 [T Bl A) ot X sy
1

M2 (20 —1)

40y (2q)20—1

V3026t + he™***)(1 + B X4 D),

and

Bt +1) = (el = B [ (80) = DS(0 = 8) (s, X (s = 7(5))ds

Volume 7, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm 1121|




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

t1+7r
[ St = s X s = (s)as
0

t1
< 2 [ (=) e P VE| f(5, X (s — 7(5))) | Frds
0

t1+r

b2 [ e (s, X s () s
t1

Next, using (H2),

t1
E|Is(ty+7) =I5t < 2 (t—s) eV H (s, E|| X (s — 7(s))) | hds)
0
ti+r
+2[ 2= (6, B X (s — 7())||%)ds.
t

1

Hence, using similar arguments as in Ahmed [8], Theorem (6.3.2), one can find

constants K1 and K3 > 0 depending on the parameters p, oy, k. h such that
Ells(ty +7) = st < 2kYapta K1 h* + Kah](1 + H(t, E| X (¢, — 7(t) D).
Assumption (H2) indicates that there is a solution u; that satisfies
uy = mE||o||% + K(T) /Ot H(r,u,)dr,
where m = K (T) = 2kyapia[K1h%* + Ksh]. We have
E|I5(ty +7) — Is(t)[l7 < w < oo,

Neuat,

Ells(t + 1) - st} < 2| [ (S(t 4 — ) — S(ty — 5))g(s, X (5 — 6())dW (s)|I3

t1+r
28| f S(ty + 7 — $)g(s, X (s — 5(s))dW (s)|[3.

Ellls(ty +r) = Ts(t)lf < 2]@ 1J’5||~‘5(f1+'f’—5) = S(t1 = 5))g(s. X (s — 8(s)))[|F;ds

t1+r
w2 [ B (- = )9l X s = 300 e,
t

1

t1
Bllo(ti+7) = Totolfy < 2 [ (6= 0720 I Blg(s X (s = () Ifyds
0

t1+4r
12 [ 2 =3) B g (5, X (s — 7(s)) B ds,
t

1
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EllIs(ty + 1) — Ity < 2 / (= )22 B (s, | X (s — 7(5))) [3)ds

t1+7r
+2f e BRI (5 B X (s — 7(s))|5)ds.

t1

wherein we used Da Prato and Zabezyk [4] (11, Theorem 6.10, page 160) or Lemma

2.4 [1] . Arquing as before, we find constants K3 and K4 > 0 such that

BE|Is(ts +7) — I(t)|3 < 2kvapa[Kah® + Kyh](1 + H(s, E|| X (t1 — 7(t)]|%)),

Assumption (H2) indicates that there is a solution u; that satisfies

t
uy = mE| |5 + K(T) f H(r,u,)dr,
0
where m = K (T') = 2kvopta[K3h®* + K4h] we have

EHIB(fl +T) — Iﬁ(fl)H%{ S Uy < 00O

as h — 0, Thus, © is indeed continuous in 2-th moment on (0,00]. Next, we

show that &(S) C S. It follows from (3.7) that

Elo@)®E < 6{EISOOF + EIS#)a0, )7 + Ellalt, X[l

+E| [ (~A)8( = s)ats Xasly

+E| [ (=0 (5. X5 = 7(0)) [y

1B / S(t — 5)g(s, X (s — 7(5))) [3dW's}

6
= Z Jz‘
i=1
We now estimate each term in (3.8):

i< 6Tl

By Lemma 2.1 and assumption (H/), we have

Jp < 6(=A)T 2T CE(1 + E)¢llD)-

Js < 6)(—A)TPC31 + E|X (6)])3)
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Next, using assumption (H4) and Lemma 2.2, we have

MZ I'2a -1
la(a )jE|

J.
4 (2a)2a-1

)“als, X,)||ds

SM2 T(20 —

127C5
(2 _)2a 1

(1 + E|1X0,5)-
and by assumption (H2) and Lemma 2.1, we get

t+-0
Js < 6E sup j e~ 20— ) (5, B|| X (s — 7(s)|)3)ds
—r<6<0.Jo

6TCT(1+ H(t, E| X (t1)]3))

VAN

Lastly, by [4], Theorem 6.10 and assumption (H2), we have

t
Js < 6]4/ E|b(s, X (s —7(s))|/3ds
0
GRTCT(L + H((t), B X (t1)]I7)-
Consequently, E||(0(X)(T)||3, < oo, implying that © maps S into itself. Thirdly,

we will show that © is contractive. For @,y € S, proceeding as we did previously, we

can obtain

sup E|6(z)(t) — 0 (y) ()| E

s€[0,17]
< 4B sup lalt, X(0) - alt, YOI
s€[0.17]
AE sup || | (=A)S(t— s)[a(t, X (1)) —alt,Y ())]ds|F
se[0,T7] 0
AE sup || [ S(t—s)(fs, X(s = 7(s))) — fs,Y (s — 7(s))))ds]|3
s€[0.17] 0
AE sup || [ S(t—=s)(g(s, X (5= 8(s))) — g(s,Y(5,6(5))))dW ()|,
s€[0.77] 0
< 4C3| - AT 2[up E|X(t) - Y®)D
2T
4%% s PIX0 - Y0l
T4 H (r,E( sup || X(t) =Y ()||%)dr
s€[0,T7]

e [ H(r. E( sup | X(t)— Y (0)|3)dr
0 s€[0,7
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Now choosing T' > 0 sufficiently small, we can find a positive number L(T') € [0,1]
such that

[0(X) —e)|s < LX) =Y (@) |lp + H(t, X(t) = Y(1))].

For any XY € §.Hence, by the Banach fixed point theorern, G has a unique fized

point X € 8 and this fized point is the unique mild solution of (1.1) on [0,T]. Neaxt,

we continue the solution fort > T, see Ahmed and Govindan [8],[12] . for notational

convenience, set T = t1. Fort € [ty,ts], where t; < ty, we say that a function l(t)

is a continuation of l(t) to the interval [t1,ta]if
(a) l(t) € C(|—o0,t2], L(2, H)), and

()

(1) = S(t—t)[E(t) +a(t1,€)] - alt,l) - ]0 AS(t — s)a(s,1.)ds

t t
+ [ =il = r(s))ds + [ (= s)gs, s = 5NV (),
0 0
The terminology mild continuation applied to l(t) is justified by the observation that
if we define a new function n(t) on [0,ta] by setting

X(T) if 0<t<t,
I(t) if t <t<to,

n(t) =

and [(t) = £(t),t € [—00,0], then l(t) is a mild solution of (1.1) on [0,tz]. The
existence and uniqueness of the mold continuation l(t) is demonstrated exactly as
above with only some minor changes. The details are therefore omitted. Repeating
this procedure, one continues the solution till the time t,, = t,a. where 0,1,,] is
the maximum interval of the existence and uniqueness of a solution. For t,, finite,
limB|X ()] = 00 as t — t,,. If not, then there exists a sequence {T,} converging
to t,, and a finite positive number § such that E|X(7,)|> < & for all n. Taking n
sufficiently large so that T, is infinitesimally close to t,,, one can use the previous
arquments to extend the solution beyond t,,, which is a contradiction. Next assurne

that t +6 < 0. In that case,

Ell(B8X); — (Y )| = 0.
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This complete the proof. positive numbers o O
4 Example

Consider the neutral stochastic partial functionael differential equation with finite
delays T1(t), 7o(t), T3(t) — 00, t — 00!

l3(t) " u(t + w, x)dw [82 u(t,x) + 11 (t) ’ u(t + w, x)dw|dt
o u(t +w,z)dw| = [zHult,z 1(t ((t 4+ w, z)dw|dt
[y A 5.7 o
+Ig (t)u(t — Tg(t),.’l’)dﬁ(t), t >0, (4.9)

dlu(t,z) +

L:RY SR, i=1,2,3; wu(t.0)=ult,7) =0 t>0,

u(s,x) =¢
where 3(t) is a standard one dimensional Wiener process, 1;(t),i = 1,2,3 are con-
tinuous functions and E||¢||? < oc. Take H = L2[0, 7], K = R'. Define
—A:H—H by —A= dd—fg with domain D(—A) = [z € H : 2,020z

are absolutely continuous, 9%z/9x% € H,z(0) = z(7) = 0]. Then

—Az = an (z,2n)zn, =z € D(—=A), (4.10)

n=1
where z, () = \/%sin nx,n = 1,2,3... is the orthonormal set of eigenvec-
tors of —A. It is well known that —A is the infinitesimal of an analytic semigroup
S(t),t >0 in H and is given by
oo
S(t)z = Ze_”%(z.zn)zn, ze H, (4.11)
n=1
that satisfies || S(t) ||< e=™"t,t > 0,and hence is a contraction semigroup.
Define
I3(t) 0
| (A3 Sy
flt,wey) = (1) /U ()tc(t+-ur,:l?)du.?,
—7a(t

g(tywy) = lau(t —7o(t), z).

a(t, wy) u(t + w,x)dw,

(4.12)
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Then
ES(T) 3/4 0
attw s = 2 | Y [t w)dw)
| (=A)3/4 ] —ra()
< BMm@) | ul  as. (4.13)

Let u(t,v) = 6(t)a(v),t € [0,T] where §(t) > 0 is locally integrable and u(v) is a
concave nondecreasing function from RT to RT such that a(0) = 0,a(v) > 0 for
u>0and [, ﬁdv = 00. The comparison theorem of ordinary differential equation
shows that assumption (Ha). Now let us give some concrete examples of the function

u. Let K >0 and let 6 € (0,1) be sufficiently small. Define

ty(v) = Kv, v2>0.

E2(0) vlog(v™1), 0<wv <o, (4.14)
ta(v) = 1 4.1
8log(671Y) + g (6—) (v — 0), v>0

2a(0) viog(v~tloglog(v™1),0 < 4§ _. (4.15)
tiz(v) = , *.19
Slog(0~Yloglog(671) + @3(6—) (v — §), v >0

_! . . . _ .
where @ denotes the derivative of function . They are all concave nondecreasing
R IE D dv X S T
functions satisfying fo Ay = To° (i=1,2,3).

Hence, there exists a unique mild solution by Theorem (3.2)
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