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Abstract

The paper contains an investigation of the behavior of the Zeros of analytic theta functions. We have
considered briefly an analytic representation of finite quantum systems Zy. We note that analytic
functions on a torus have exactly N zeros. A brief introduction to the zeros of analytic functions and their
time evolution is given. We discuss the periodic finite quantum systems. Then we introduce the time
evolution of finite quantum systems with the evolution operators which reflect physical significance. The
general ideas are demonstrated with several examples.

1 Introduction

This Paper is devoted to the study behavior of paths of zeros in analytic representation of
finite quantum systems on a torus. Analytic functions are very important tools in several
branches of physical sciences. Refs.[1, 2, 3] studied analytic functions and used them widely
in quantum mechanics. The analytic Bargmann function [4, 5, 6. 7, 8, 9, 10] is important
in studying the overcompleteness of the coherent states. Refs [11, 12] has studied analytic
representations of finite quantum systems on a torus. The analytic function representing
a quantumn state has exactly N zeros which define uniquely the quantum state. Ref [13]
studied the motion of the N zeros on the torus. In the present paper we introduce special
evolution operators and thier time evolution. We present the eigenvalues of the d x d matrices
Ha.Hp, He . The path of zeros are functions of time. The path of this motion is a curve
as long as functions x(¢) and y(#) are continuous. We demonstrate these general ideas with
various concrete examples.

2 Analytic representation of finite quantum systems
Let H be a d-dimensional Hilbert space. Let |X,.),|F.), where m is the integer modulo

n, be an orthonormal basis in this Hilbert space (position states and momentum states
respectively). and

/e . 2mwm |, o
_ -y AT—1/2 s -
| Pr) = F| X)) = N Z(e}‘p |:3' N :|)|—X?n>- (1)
and F is the Fourier operator given by
F=N""2> (exp |i 270 3| X ) (X . (2)
N
Let x,p be the position and momentum operators and that they are given by

N—1
xo= > n|X,)(X,, (3)

=0
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p = FaFt =" n|P. )P (4)

n=>0
We study an arbitrary normalized state |[F}, such that
) =Y FulX):i D [Fnf =1 (5)

Refering to ref[13] we represent the state |F) in Eq.(5), with the analytic function

N—-1 .
_ 1/ ‘ N-1_ JEEL ;
f(z)=n mz F,,,05[xmN g (6)

=0

which obeys the quasi-periodic relations
J: {z + \/2WN} = f(2)
b [z + iV ZﬂN} = f(z)exp [ﬂN - -i\/?ﬁﬁ-’z} . (7)

where v/5 is Theta function defined as

Ua(u, 7) = Z exp(iTrn® + i2nu). (8)

The analytic function f(z) is defined on a cell [a,a + 27 N) x [b, b+ /27N ) (defined on a
torus)
Example 1 below gives a simple related demonstration

Example 1

We consider the case where N = 3 and the state [F(0)) at ¢+ = 0 is described through the
coefficients

Fo(0) = 0.08—0.24i, F1(0) = 0.52 + 0.45i,
Fo(0 )= 0.55+ 0.37:. (9)

In Fig.1 we plot the real part of the function f(z)in Eq.(6).

3 Zeros of the functions f(z)

Ref.[12] has proved that the sum of the zeros yu,, of f(z), is gives as

N o2
> = C0VIN2 4+ (5) N1+ ) (10)

n=1

Again, according to refs.[12; 13] we construct the function f(z) from its zeros j,, which
satisfy the relation of Eq.(10) as follows

9\ 1/2 N
f(z) = gqexp [-i (:2\,) [Z:| H g [wy(2); ]

n=1
w o\ 1/2 (1 +1)
wz) = (55) G-+ =5 (11)
where [ is the integer relation of Eq.10; and ¢ is fixed calculated from the normalization

condition.
From ref.[13] the coefficients F,,, were calculated from f(z) as following.
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4  paths of the zeros

Following ref.[13] we consider the state |[F(0)) = > F,,(0)|.X;m) at ¢ = 0. Using the Hamil-
tonian H, the state |F(0)) evolves with time ¢ as:

[F(t)) = exp(ith)|F(0)) = i Fo (8)[Xom) (12)

Example 2

We consider the case where N = 3 and that the state |F(0)) at ¢ = 0 is deseribed through
the coefficients

Fo(0) = 0.9—0.008;, Fy(0)=0.3+0.004,
F2(0) = 0.3+ 0.003i. (13)

We have calculate the coefficients |F(#)) for the two eases of the Hamiltonians Hy, Hy

Hy=—iln {exp (”;) exp (“32)} . (14)

Using MATLAB we calculate numerically the zeros p,, of f(z). In Fig.2 we present the three
curves ft,, for the first Hamiltonian H; (dotted line ), and the second Hamiltonian H(solid
line) in Eq.14.

5 Periodicity of the zeros

Ref.[13] has discussed the Periodic finite quantim systems. In some cases d of the zeros
follow the same path.Thence that we say this path has multiplicity d .

Example 3
Let

o(0) = 1.37 +2.296; 111(0) = 2.17 + 2.344,
(2(0) = 3.02+1.94i (15)

be the zeros at + = 0 and let
1 10
H = 1 10 (16)
0 0 1
be the Hamiltonian with eigenvalues 0, 1,2 with a period «@ = 27. Numerically we get

pala+1) = pa(l), pala+1) = pa(l), (17)

In this case and after one period the juq, o follow the same path and after another period
they exchange position while pz follows a closed path; i.e.

1(0) = p2(0), prz(e) = (0), pole) = 10(0). (18)

In Fig.3 we plot the paths of these zeros.
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Example 4
Let

Ho(0) = 0.7+ 2.6, ny(0) =214 4.34,
pa(0) = 3.7+ 114, pa(0) =3.74 2.24, (19)

be the zeros at t = 0 and let

1 —i 0 0
i 1 00 .

H =19 0 20 (20)
0 0 0 2

be the Hamiltonian with eigenvalues 0,2, 2, 2. Using Matlab we calculate the paths of the
zeros to find that

pola +1) = palt), pola+1) = pa(t),
pa(a+1) = pa(t), pala+1) = po(t) (21)

In this example all the zeros follow the same path and after a period of o = & we get that

pole) = pa(0), pafe) = p2(0),
pa(a) = p3(0), pala) = pp(0). (22)

In Fig.4 we plot the paths of this zeros.
Hence by definition the zeros 1, g2 in example.3 have a multiplicity d = 2 and the four
zeros in example.7 have a multiplicity d = 4.

6 The behavior of the zeros of analytic functions of sys-
tems with physical Hamiltonians

Let ©2; (where i = 0,...,d — 1) be the eigenvalues of the Hamiltonian H of the system. If
the ratios (2, /€); are rational numbers then the system is periodic. In this case the d paths
of the zeros (,(¢) are in general closed curves on the torus. In some cases 9 of the zeros
follow the same path(Ref. [13]). We say that this path has multiplicity 9i. Below we give
examples with 9 = 2.3. We also discuss how a perturbation of the initial values of the
zeros splits a path with multiplicity 991 into 91 different paths. We have seen that in the
special case of periodic systems the zeros follow closed paths. We have also studied the case
of paths with multiplicity 9% and shown that the zeros obey relations of type (17)and(21).
After one period the zeros exchange their positions (Eqs(18),(22)).

Now, flowing ref. [13] we study the time evolution of such systems with the evolution
operators

x? p?

2 + 2

ia? -r'p2
Up(t) = exp(itHp); Hp=-iln {exp (2> exp( 5 )}

Ualt) = exp(itHs); Ha=

i )'

2 5
Uc(t) = exp(itHe); Ho=FHpFt=—iln {exp ("7) exp (%ﬂ (23)

All these evolution operators are the analogues of a harmonic oscillator evolution operator
with Hamiltonian H = ﬁg + ﬁg In the present context there is no analogous formula to the
Baker-Campbell-Hausdorff relation, and therefore there is no simple relation between them.
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Below we present the eigenvalues of the d x d matrices H 5. Hp, H-. Note that Hg. Ho have
the same eigenvalues because they are related with a unitary transformation.
Mathematically, the eigenvalues of Hp, Ho are defined modulo 27N, because there is
a multivaluedness associated with the logarithms in Hp, Ho. Physically, the eigenvalues
of Hp should be close to the eigenvalues of H,, because in the semiclassical limit these
Hamiltonians are the same. This physical requirement defines which of the logarithms
should be chosen.

6.1 Eigenvalues of the Hamiltonians H4. Hg. He

As in ref. [13] we calculate the eigenvalues of the Hamiltonians Ha, Hp, He for the case d =
5. The calculation of the eigenvalues A; of H4 (labelled in ascending order) is straightforward
and the results are presented in table 1. The eigenvalues B; of Hp are defined modulo 27N,
but as we explained we chose the ones which are close to the eigenvalues A; of H 4, because
in the semiclassical limit the corresponding Hamiltonians are the same.

In order to do this, we express 4; as

Ay = AL+ 27N; (mod 27);  0< AL < 2x (24)
We then calculate the eigenvalues of the matrix exp(iHp) = exp % exp % which are
B; = exp(iB;). From B; we calculate the values of B] = —iln B; such that 0 < B! < 2« (the

B! are labelled in ascending order). We then add 27 N; (calculated in Eq.(24)) to B! and
hence In table 1. we present the B; which, as we explained. are eigenvalues of both Hp, Hc.

| Hy || Hg.Hc |
12.82 12.90
8.15 8.46
5.17 4.44
2.87 3.41
0.96 0.77

Table 1: The eigenvalues of H4, Hg, He.

Example 5

We consider the Hamiltonian Hg
Let (o(t).C1(t), (2(t) be the paths of the three zeros. We assume that at ¢ = 0, we have
that

po(0) = 2184 2.15¢, p1(0) = 2.18 + 2.224,
t2(0) 2.19 4 2.19:, (25)

These zeros obey the constraint of Eq.(10) and they are on a torus (i.e., they are defined
modulo (67)'/2). In Fig.7 we present the paths of these zeros 30(t), 31(¢). 32(t).

In the first figure, during one period the three zeros seem to followi a closed path. In fact
these zeros do not follow a closed path,actually they do not come to their original position
after one period . they come to a position very close to the original position. In the second
figure the three zeros still do not follow a closed path, these zeros do not come to their
original position after 4 period, they come to position very closed to the original position.
In the third and fourth figures the three zeros still do not follow closed path. In this case the
3 paths of the zeros (,,(¢) are not closed curves on the torus, and this system is not periodic.

Example 6
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Now consider the Hamiltonian H¢, and
Let (o(t), (1(t). C2(t) be the paths of the three zeros. We assume that at ¢ = 0 we have

po(0) = 2,18 42,154, pq(0) = 2,18 4 2,224,
p2(0) = 2.19+2.19i, (26)

These zeros obey the constraint of Eq.(10) and they are on a torus (i.e., they are defined
modulo (67)'/2). In Fig.7 we present the path of these zeros 3(), 31(t), j2(%).

In the first figure, during a period the three zeros seem to following closed path. In fact
these zeros do not follow closed path, these zeros do not come to their original position after
1 period , they come to position very closed to the original position. In the second figure
the three zeros still do not follow closed path. In this case the 3 paths of the zeros (,(¢) are
not closed curves on the torus, and this system is not periodic.

Example 7

Consider the Hamiltonian H 4, and
Let (o(t), Ci(t), C2(¢) be the paths of the three zeros. We assume that at ¢ = 0, we have

1o(0) = 218 + 2,150, pu1(0) = 2.18 + 2.22i,
12(0) = 2.19 +2.19i, (27)

These zeros obey the constraint of Eq.(10) and they are on a torus (i.e., they are defined
modulo (67)/2). In Fig.7we present the path of these zeros 3o(t), 31(t). 32(t).

The zeros do not follow closed paths. In this case the 3 paths of the zeros (,(t) are not
closed curves on the torus, and this system is not periodic.

7 Conclusion

The analytic representation of finite quantum systems have been studied. The zeros of
analytic theta function and their time evolution have heen considered. special examples
which relect physical meaning, have been encountered, and where the paths of various zeros
for selected Hamiltonians were calculated and plotted. A brief discussion to the Periodicity
of the zeros has been given. It all depends on the ratios ),/ of the eigenvalues of the
Hamiltonian of the system. Not that the special Hamiltonians H,4, Hp, He we see that
The Hp and He have the same eigenvalues. This because they are related with a unitary
transformation.

We should conclude that our study so far was dealt with a torous. In a future study we will
study analytic functions on a unit disc.

References

[1] A.M. Perelomov, ‘Generalized coherent states and their applications’ Springer, Berlin,
(1986)

[2] A. Vourdas, J. Phys. A39, R65 (2006)
3]

A
[4] V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961)
V. Bargmann, Commun. Pure Appl. Math. 20, 1 (1967)

. Vourdas, R.F. Bishop. Phys. Rev. A50, 3331 (1994)

[5] S. Schweber, J. Math. Phys. 3, 861 (1962)
S. Schweber, Ann. Phys.(NY) 41, 205 (1967)

Volume 9, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 1366|




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

[6] J. Kurchan, P. Leboeuf, M. Saraceno, Phys. Rev. A40, 6800 (19189)
A Voros, Phys. Rev. Ad0, 6814 (1989)

[7] J.H. Hannay, J. Phys. A29, L101 (1996)
J.H. Hannay, J. Phys. A31, L755 (1998)

[8] N.L. Balazs, A. Voros, Phys. Rep. C143, 109 (1986)

[9] P. Leboeuf, A. Voros, J. Phys. A23, 1765 (1990)
P. Leboeuf, J. Phys. A24, 4575 (1991)
M.B. Cibils, Y. Cuche, P. Leboeuf, W.F. Wreszinski, Phys. Rev A46, 4560 (1992)
J.M. Tualle, A. Voros, Chaos, Solitons and Fractals, 5, 1085 (1995)
S. Nonnenmacher, A. Voros, J. Phys. A30, L677 (1997)

[10] H.J. Korsch, C. Miiller, H. Wiescher, J. Phys. A30, L677 (1997)
F. Toscano, A.M.O. de Almeida, J. Phys. A32, 6321 (1999)
D. Biswas, S. Sinha, Phys. Rev. E60, 408 (1999)

[11] A. Vourdas, Rep. Prog. Phys. 67, 267 (2004)

[12] S. Zhang, A. Vourdas, J. Phys. A37, 8349 (2004)
S. Zhang, A. Vourdas, J. Phys. A38, 1197 (2005) (corrigendum)

[13] M. Tabuni, A. Vourdas and S. Zhang, (Physica Scripta. 2010)

[14] M. Tabuni. World Academy of Science, Engineering and Technology International Jour-
nal of Mathematical Sciences 120, Vol:7 No:8, 2013.

[15] M. Tabuni. World Academy of Science, Engineering and Technology International Jour-
nal of Mathematical Sciences 121, Vol:7 No:8, 2013.

[16] M. Tabuni. World Academy of Science, Engineering and Technology International Jour-
nal of Mathematical Sciences 78,Vol:7 No:8, 2013.

Volume 9, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 1367|




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Figure 1: The real part of the function f(z) in Eq.(6) where N = 3 and the |F(¢)) at t =0
is described through the coefficients in Eq.(13).
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Figure 2: The distribution of the zeros s, (#) for the state |F(¢)) which at ¢ = 0 is described
in Eq.(13) for Hamiltonian H; (dotted line)and Hy (solid line) of Eq.(14).
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Figure 3: The path of the zeros g, pt1, pto with the Hamiltonian of Eq.16. The initial values
of the zeros are given in Eq.15

Volume 9, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm 1368|




Journal of Progressive Research in Mathematics(JPRM)

ISSN: 2395-0218

Figure 4: The path of the zeros pg. 1. pt2, p3 for the Hamiltonian of Eq.20. The initial

values of the zeros are given in Eq. 27

Figure 5: The paths of the zeros 30(t), 31(¢), 32(¢) for the system with the Hamiltonian Hp
after 1 period, after 4 periods, after 8 periods and after 10 periods. At ¢ = 0 the zeros 30(0),

51(0), 32(0) are given in Eq.(27)
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Figure 6: The paths of the zeros 3(#), 31(7), 32(¢) for the system with the Hamiltonian He
after 1 period and after 8 periods. At t = 0 the zeros 3,(0), 31(0), 32(0) are given in Eq.(27)

Figure 7: The paths of the zeros 30(t), 31(f), 32(¢) for the system with the Hamiltonian H 4
after 8 periods. At ¢ = 0 the zeros 30(0), 31(0), 32(0) are given in Eq.(27)
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