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Abstract:  

The most critical factor in econometric estimations is parameter identification. Identification in econometric 
models formalizes prior assumptions and the data to information about a parameter of interest. However, 
there are two important features characterize duration data. The first one is that the data may be censored, 
and the second feature of duration data is that exogenous determinants of the event times characterizing the 
data may change during the event spell. The two characteristics lead some famous identification problems for 
the duration models. Following the recent literature in partial identification, we show the conditions when the 
duration models could be identified and provide several suggestions for the confidence bounds of partial 
identifications.  
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1. Introduction: 

There are several problems which researchers have to face, when one considers the treatment effect of a social 

experiment on duration outcomes. First, the randomization selection usually is not easy to satisfy. Even with randomized 

assignments, participants may not comply completely, which induces a selection bias. Second, the composition of 

survivors changes over time in different ways in the treatment and control groups, even though the selection is random, 

and this makes the analysis of individual hazard rate different from other treatment effect models. Third, the response to 

the social experiment may not be immediate, which induces the choice of an instrumental variable more restrictive. With 

later compliance, even though one can find a plausible instrumental variable which satisfies the condition of ex post 

exclusion restriction, it is almost impossible for researchers to non-parametrically identify the condition of ex ante 

exclusion restriction (Abbring and van den Berg, 2005), which means to test the efficiency of such an instrumental 

variable is almost intractable. To simplify the analysis, here we ignore the problem of later compliance and assume all 

participants in a social experiment will respond immediately to the assignment, mainly focus on the effect of self-

selection. 

To analyze the effect of self-selection, one of the classical methods is appealing to some instrumental variables.  In the 

classical switching regime model, we usually require the number of variables in the decision function should be more 

than the outcome functions, since the identification of the effect on hazard rates would require additional information 

(see Heckman, Smith and Taber, 1998, for a discussion). However, to find an instrumental variable usually is not easy 

and in duration outcome model it is also almost impossible us to test its condition of exclusion restriction. As mentioned 

by Abbring and Berg, with duration outcome, even if we can find a valid instrumental variable, we still cannot non-

parametrically identify the average treatment effects on individual hazard rates and have to use a semi-parametric 

structure. In this paper, we drop out the IV approach but also adopt the popular assumption of mixed proportional 

hazards (MPH). In the model, the hazard rate is written as a multiplicative function of observed explanatory variables x , 

the elapsed duration t , and a random term v  representing unobserved explanatory variables. Specifically, 

( | , ) ( ) ( )t v x t x v  
                  

(1)
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is the hazard rate of | ,t x v . It is related to the distribution function ( )F   of | ,t x v by 

( | , ) log(1 ( | , )) /t x v d F t x v dt    . The distribution of |t x  follows by integration of ( | , )F t x v  w.r.t. the 

density of v . (See Lancaster, 1990 and Jenkins, 1995 for extensive surveys). The function ( )t  is called the baseline 

hazard. Usually, ( )x  is specified as exp( ' )x  . 

To analyze the treatment effect, Guo (2017) creatively introduce the potential outcome framework. Guo’s seminal work 

assumes two different treatment outcomes. Our discussions heavily depend on Guo’s results. With the sights from 

Shintani and Guo (2016), in this paper we make use of the potential outcome framework.  In the potential outcome 

framework, the error terms in treatment equation and control equation are different but correlated. Without enforcing 

some additional conditions, it is impossible to identify the full joint distribution of them, since we cannot observe the 

potential outcomes jointly (Heckman 1990). However, regarding duration outcome, researchers usually assume that the 

error terms in treatment equation and control equation are the same, and the treatment effect differs from a parameter 

(e.g. Ham and LaLonde 1996; Abbring and van den Berg 2005). Obviously, this is a very strong assumption
1
. 

The identification of the hazard function of duration outcome has been studied by a lot of researchers. Elbers and Ridder 

(1982) consider a proportional hazard model. In their paper, they consider a single spell model and assume the hazard 

function to be ( | , ) ( ) ( )t v x t x v    where x  can be interpreted as the observed and ν as the unobserved 

heterogeneity in the sample. Since we can only identify the function
( ) ( )

0
( , ) 1 ( )m t x vG t x e f v dv


   , with 

0
( ) ( )

t

m t u du  ,it is impossible for us to estimate ( )t  and ( )x  directly. However, the authors prove that with 

some conditions, we can identify both ( )t
 
and ( )x , and even the distribution of the unobserved heterogeneity ( )f v . 

With self selection, the distribution function of the unobserved heterogeneity ( )f v  will be distorted, since v  is 

correlated with the decision rule, which means the participants with different v  have different probabilities to be 

observed. In this paper, at first we will demonstrate that although ( )f v  cannot be identified, but we still can identify

( | )sf v S . 

The joint distribution of the error terms in the treatment outcome equation and control outcome equation has been studied 

by some econometricians (e.g. Cunha and Heckman, 2008; Wu and Fan, 2010; Park and Fan, 2012; van den Berg and 

Drepper, 2016; Reza and Rilstone, 2016), but for duration outcome it has been little studied. One reason may be the 

faintness of its identification, and the other reason may be that the estimation of the error terms still be ambiguous.  Van 

den Berg (1997) studies the association measures for duration outcomes in bivariate hazard rate models, but Berg did not 

specify his analysis in the potential-outcome framework.  In his paper, the unobserved heterogeneities from different 

duration variables may be dependent, so the duration variables may be dependent. As common assumptions, he firstly 

also assumes that the marginal hazard for both of two variables is the mixed proportional hazard, so the hazard rate 

( | , ) ( ) ( )s s s s s s st v x t x v   , 1,2s  for group 1  and 2 respectively.  Then Berg specifies the baseline hazard as the 

so-called Weibull specification, i.e. 
1

( ) i

i i i it t
  

 . As mentioned before, the dependence of different duration 

variables conditioning on observed variables comes from the unobserved heterogeneity terms sv .  With different joint 

distributions, the correlation of the two duration outcome variables will be different. Van den Berg then deduces the 

sharp bound for the correlation: 

           

1 2

1 2 1 2 1 2

1 1
( , | )

( 1)( 1)
CORR t t x

a a a a a a


 

  
                   

(2)  

Regardless of the values of ( )s x , and also regardless of the shape of 1 2( , )G v v . 

Here, we consider a social experiment. In the experiment, people are randomly selected into the treatment group, and the 

compliance will be immediate but incomplete.  We assume the hazard rate functions of both the treatment group and the 

control group satisfy mixed proportional hazard assumption. The unobserved variables for treatment duration outcome 

                                                           

1
Heckman (1990) mentioned that some studies indicate that unobserved (by the econometricians) components of 

1 0v v  

contribute negligibly to the endogeneity of S , so the assumption of 
1 0( | 1, ) 0E v v S x    can be held in some 

circumstance. We are not sure in duration outcome model, the assumption 
1 0v v  plays how big role it does. 
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and control duration outcome are denoted by 1v and 2v , respectively.  Intuitively, if one can estimate their marginal 

distribution and joint distribution, there are a lot of analyses will be quite straightforward, such as measurement 

inequality.  The main purpose of this paper is trying to find a method to non-parametrically or semi-parametrically 

identify the distribution of the error terms 1v and 2v , and also their joint distribution. 

The paper is divided into the following sections. The section two will present a model and give the identification of 

single duration outcome. Then, in section three we will talk about the estimation of the decision rule function. Section 

four is the core of the paper and will mainly focus on the estimation of the error term. Finally, we will compare this 

model to the competing risk model and give some directions of further research for both of them. 

2.  Setup of the Model and Identification of Single Duration Outcome 

Following Abbring and Van den Berg (2005), in a social experiment the treatment is randomly assigned to agents, and 

the compliance is immediate but not complete. We are interested in the causal effect of the treatment on the duration 

spent in the state of interest (outcome). The framework I will use is the prevalent potential-outcome one. It defines causal 

effects in terms of potential outcomes or counterfactuals rather than in terms of the parameters of a regression model. Let 

(0)iT  be the duration outcome without the treatment for individual i . (1)iT
 
is the duration outcome with treatment. We 

assume that { ( )}: { ( ) : {0,1}}i iT s T s s   is a measurable stochastic process. Moreover, for ease of exposition we 

assume that each ( )iT s  is continuous, and denote the hazard rate of ( )iT s  for a specific individual by ( | , )is it x s .The 

hazard rate for treatment state is as follow: 

1 1 1 1( | , 1)= '( ) ( )i i i it x s t x v  
                             

(3)  

The hazard rate for control state: 

 0 0 0 0( | , 0)= '( ) ( )i i i it x s t x v  
                           

(4)  

where t  denotes the time elapsed, ix  is a vector of explanatory variables which are observed by econometricians, such 

as education background, personal property and age in an unemployment training program, and isv  is  a positive 

multiplicative disturbance, or unobservable heterogeneity. This specification of the hazard rate is so called mixed 

proportional hazard rate (MPH), which frequently has shown in duration outcome literature. The selection equation is as 

follow: 

* 'i i is z   
                                     

(5)  

With 
*: ( 0)i is I s  . As the classical potential-outcome setup, if there exists self selection bias, the error terms i and 

isv should not be independent. 

To identify the functions '( )s t and ( )s ix , we follow Elbers and Ridder’s approach (1982) and mainly focus the 

treatment group.  The identification of the control group is quite similar and can use the same approach. Suppose the 

marginal distributions for 1iv  and 0iv  follow 
1 1( )vf v  and 

0 0( )vf v  respectively.  The duration distribution for the 

observed treatment group is: 

1 1 1

1

( ) ( )

1 1 1
0

( , | 1) 1 ( | 1)i im t x v

i v i iG t x s e f v s dv





   
                   

(6)  

with 1 1
0

( ) ( )
t

m t u du  . I make the following assumptions. 

 Assumption 1: The random variable 1iv  is non-negative with distribution function
1
( )vF  , and its expectation is

1( ) 1iE v  . 

 Assumption 2: The function 1( )m  , defined on [0, )  can be written as the integral of a non-negative integrable 

function 1( )   which is defined on [0, ) , i.e. 
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1 1
0

( ) ( )
t

m t u du  0t                                   (7)  

 Assumption 3: The set X  is an open set in 
kR . The function 1( )   is defined on X  and non-negative, 

differentiable and non-constant on X . 

 Theorem: Let 1{ ( , ); }i iG t x x X  be a family of non-defective distribution functions which satisfy Equation

(6) . Then under the Assumptions 1, 2, 3 this representation is unique i.e. the functions 1( )m   and 
1( )  and the 

distribution of 1iv  conditioning on selection 1s   are uniquely determined (
1( )   uniquely up to a constant). 

With self selection, even if one assumes 1( ) 1iE v  , 1( | 1) 1iE v s    may not hold. The cumulative distribution 

function one can identify directly becomes 1{ ( , | 1); }i iG t x s x X  . The process of the identification is as follows. 

Differentiating (6)  with respect to t  gives 

1 1 1( ) ( )

1 1 1 1 1
0

( , | 1) ( ) ( ) ( | 1)i im t x v

i i i ig t x s t x e f v s dv
 




   ,  , 0x X t  .        (8)  

Even without 1( | 1) 1iE v s   , dividing by 1( , | 1)cg t x s   and let 0t  , one still can find 

1
1 1

0
1

( , | 1)
( ) ( ) lim

( , | 1)
c

t
c

g t x s
x x

g t x s
 







                         

(9)  

Equation (9) determines 1( )x up to a constant. This result is quite intuitive. When the time close to the starting point, 

one can view the composition of the treatment group has not changed, so the hazard rate will equal to the survival 

probability approximately.  Since 1iv  is assumed to be positive, (6)  can be written as 

11 1 1( , | 1) 1 ( ( ) ( ))vG t x s m t x    0t                        (10)  

Where
1v

  is the Laplace-transform of 1v  which is defined as 

1

1 1
0

( ) ( | 1)yv

v y e dF v s


  0y 
                         

(11)  

Further, from equation (11) , 1( )z t  can be written as 

1 1
1

1

(1 ( , | 1))
( )

( )

H G t x s
m t

x

 
  0,t x X 

                      
(12)  

where
1

1

1 vH   , the inverse of the Laplace-transform. Note that (12)  implies that the right-hand side is a function of 

t  alone and independent of x . Define
1 11T G  , and take derivative of equation (12)  with respect to x  

1
1 1 1 1 1 1

( ( , | 1))
( ) '( ( , | 1)) ( ( , | 1)) ' ( ) 0

T t x s
x H T t x s H T t x s x

x
 

 
   


0t          (13)  

By a change of variables 

 1 1( , | 1) ( , )y T t x s t K y x   
                        

(14)  

with 0t   and 0 1y  , equation (13)  can be written as 

1 1
1 1 1 1

( ( , ), )
( ) '( ) ( ) '( ) 0

T K y x x
x H y H y x

x
 


 


0 1y  .                 (15)
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This differential equation can be solved for H . The solution is: 

1
1

1/ 2
1

1

ln ( ) 1
( ) exp{ }

( ( , ), )

sd x
H y c du

Tdx
K u x x

x








 0 1y  .              (16)  

Next step we should prove the solution is unique. The process is the same as Elbers and Ridder’s except we should make 

use of the condition of 
1 1( | 1)vf v s   fixed rather than the condition ( ) 1sE v  . Here I skip this part. If one is interested 

in this part, please refer to Elbers and Ridder. 

3. The Estimation of Decision Rules 

Agents participate in the treatment program based on their selection. The selection indicator is a binary variable
*{ 0}i is I s  , and 

*s  follows equation 5（ ）: 
* 'i i is z    . The estimation of   and the distribution of i  has 

been considered by several researchers (Manski 1988, Ichimura 1987, Powell, Stock and Stoker 1989, etc). Intuitively, 

one can easily estimate the propensity score conditioning on iz . After estimating the propensity score, we can write the 

equation 

 Pr( 1| ) ( | ) ( ' )i i is z E s z F z   
                         

(17)  

Where F  is the assumed cumulative distribution function of  . As we can see, this is a typical single-index model. 

Through an estimation of a density-weighted average derivative of a general regression function, Powell, Stock and 

Stoker proposed an estimator ̂ of the coefficients   and argue that it is root- N -consistent and asymptotically normal, 

even without assuming the distribution of the error terms. With known ̂ , then one can trace out the cumulative density 

function by kernel estimation method. 

4. The Marginal Distribution of the Error Terms 

From section 2, it is possible for us to identify the functions ( )s x and ( )s t , and the conditional density function

( | 1)sf v s  , so one can identify the treatment effect for hazard rate individually. However, since the composition of 

the treated group changes over time, the distribution of error term 1iv  may be interesting. Once the distribution of the 

error term is estimated, the quantile treatment effect or the measurement of inequality treatment can be analyzed 

straightforwardly.  Since ( | 1)sf v s   can be denoted as 

 

*

*

( , ' )
( | 1)

Pr( ' )

s
s

f v s z
f v s

s z





 
 

 
                           

(18)  

As we can see, if we take the limitation value of 
*Pr( ' )s z    and consider the circumstance when it goes to very 

close to 1, the distribution function ( )sf v  can be traced out. Using similar approach by Heckman (1990), the marginal 

distributions of 0 1( , , )v v 
 
which can be identified are 0( , )f v  , 1( , )f v  , 0( )f v , 1( )f v  and ( )f  2

. 

Since one cannot observed the residual pair 0 1( , )v v , it is impossible for us to estimate the joint distribution 0 1( , )f v v . 

With known 0
ˆ( , )f v  and 1

ˆ ( , )f v  , to estimate 0 1( , )f v v , there are basically two directions.  First, one may abandon 

point identification and estimation, and focus on bounding the parameters of interest (e.g. Wu and Fan (2008), Park and 

Fan (2008)). Second, one may impose a structure that is sufficiently specific to enable point identification and estimation 

of relevant treatment effects. For example, Cunha and Heckman (2006) used some semi-parametric structure and 

deduced the joint distribution of the residual terms.  

                                                           

2
To interpret the estimation of 0( , )f v  and 1( , )f v  , one can think in this way. Since the function ( ) ( )s sx t   can be 

estimated, the residual sv  can be estimated. Therefore, one can get a censored random residual pair ( , )sv  , and their 

marginal distribution can be estimated using kernel estimation approach. 
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5. A Comparison with Competing Risk Model and Further Research 

Most of the previous research starts from the hazard rate and mainly compare the difference of the hazard rates between 

treatment group and control group. However, one has to face the problem of changing composition in the corresponding 

groups if one uses the hazard rate approach.  In this section, we will mainly use the probability approach.  

Intuitively, the potential-outcome framework in duration also can be viewed as a competing risk one.  Suppose there are 

variables which are observed by econometricians but fully observed by participants themselves. The participants compare 

the potential outcomes in different groups and rationally choose the best group to participate. Heckman and Honore 

(1989) studied the identification of the competing risks model. Through using proportional hazard model, Heckman and 

Honore argue that the joint distribution of failure times can be fully identified without invoking further assumption and 

the model will be fully identified. As the majority of the literature in duration outcome, the authors also assume the 

unobservable terms are the same for different duration outcomes. As mentioned before, this obviously is a very strong 

assumption.  

In the model, each individual faces two competing treatment effects and chooses the best one between them. Associated 

with each treatment s , {1,2}s   there is a potential duration outcome, sT . The observed quantities are the duration to 

the minimum duration and the associated treatment assignment 

( , ) {min( ),arg  min( )}s s
s s

T S T T
                           

 19（ ） 

The assumptions of the hazard rate functions are the same as above. Following Heckman and Honore’s approach, the 

dependence among potential duration is introduced in the following way. Suppose the survival functions for both 

treatments are: 

( ) ( )

0
( , ) ( )s s s

s

m t x v

s v s sS t x e f v dv





 
                         

(20)  

with
0

( ) ( )
t

s sm t u du  . Since the potential duration outcomes are not independent, one can generate two dependent 

uniform distribution variables, 1U and 2U , with ( , )s sS t x U ~ (0,1)U . As mentioned in section 2, ( )s x can be 

identified from Equation (2) . That is to say dependence between 1T and 2T  can be introduced by assuming that 1U  and 

2U not necessarily independent. This implies that the joint survivor function of 1T  and 2T  conditional on X  is  

 0 0 0 1 1 1

0 1

( ) ( ) ( ) ( )

1 2 0 0 1 1
0 0

( , | ) [ ( ) , ( ) ]
m t x v m t x v

v vS t t x K e f v dv e f v dv
 

 
   

             
(21)  

Although it is not quite the same as the model in Heckman and Honore, intuitively one still can conjecture the similar 

results by using the known probability functions 

 1 1 2 1( ) Pr( , )Q t T t T T   ,  1 2 1 1( ) Pr( , )Q t T t T T  
              

(22)  

and the theorem 1 of Tsiatis (1975) that 

1 2

1

1

'

t t t

S
Q

t
 

 
  

 
,    

1 2

2

2

'

t t t

S
Q

t
 

 
  

 
                     

(23)  

Conjecture: with regular assumptions, the joint distribution of 0v  and 1v  can be identified.The interpretation of this 

conjecture is that. First, one can identify the marginal distribution of sv ; Second, with similar process one might identify 

the joint distribution of 1U  and 2U  , the function ( , )K   ; Overall, one might identify the joint distribution. 

From above analysis, the identification of the joint distribution of 1U  and 2U  might have some promising further 

research. To pursue this topic, there must be some topic to consider: what is the minimum condition for this 

identification; the exact processes and so on. As we mentioned in the previous footnote, for duration outcome model 

most of the literature mainly focus on the identification of the parameters the econometricians might be interested in. 

With identification, how to estimate them might need further research. 
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6. Conclusion 

Partial identification in econometrics is an approach to conducting inference on parameters in econometric models that 

recognizes that identification is not an all-or-nothing concept and that models that do not point identify parameters of 

interest can, and typically do, contain valuable information about these parameters. This partial identification approach 

favors the principle that inference - and conclusions and actions - based on empirical models with fewer suspect 

assumptions are more robust, hence more sensible and believable.  Stronger assumptions will lead to more information 

about a parameter, but less credible inferences can be conducted. Hazard-based models have been used extensively for 

several decades in biometrics and economics to examine issues such as life-expectancy after the onset of chronic diseases 

and the number of hours of failure of an economic program. In this paper, we consider partial identification issues in 

hazard-based models. Our results exhibit the conditions when the hazard-based models could be fully or partially 

identified. It would be interesting to develop some confidence bounds when the models are partially identified.  
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